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Chapter 1: Introduction

1: Introduction

About this book
Welcome to Advanced Python for Biologists. As I was completing my first 
book Python for Biologists I realized that, although it covered all the core 
parts of the language, I had to leave out some of the most elegant and 
useful parts of Python, so I was already thinking about the sequel. The 
purpose of this book is to continue the exploration of the Python 
language where the previous book left off, with the goal that between 
them, the two books will cover every useful part of the Python language. 
The overarching philosophy of this book is exactly the same as the 
previous one: to illustrate Python features using relevant biological 
examples which will be useful in real life. Just as before, the emphasis is 
on Python as a tool for practical problem-solving.

Why use Python's advanced features?
If you've read and understood Python for Biologists, or indeed any 
introductory Python programming book, then you probably have all the 
programming tools that you need to solve any given problem. Why, then, 
is it necessary to have an entire second book devoted to advanced 
features of Python? One reason is that in order to understand code that 
you find in the wild, you need to have a thorough overview of the 
language. You may be able to get on perfectly well in your own 
programming career without ever writing a class, a lambda expression, or 
a list comprehension, but when you come across these techniques in 
other people's code (and you will), you'll need to know how they work. 
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Chapter 1: Introduction

A second, more persuasive reason is that all the features of Python that 
we are going to discuss in this book have been added to the language for 
good reasons – because they make code easier to write, easier to 
maintain, easier to test, faster, or more efficient. You don't have to use 
objects when modelling biological systems – but it will make 
development much easier. You don't have to use comprehensions when 
transforming data – but doing so will allow you to express your ideas 
much more concisely. You don't have to use recursive functions when 
processing tree-like data – but your code will be much more readable if 
you do. 

Yet another reason is that knowing about features of Python opens up 
new approaches to programming, which will allow you to think about 
problems in a new light. For example, two large chapters in this book are 
devoted to object oriented programming and functional programming. 
The aim of these chapters is to introduce you not only to object oriented 
and functional features, but also to object oriented and functional 
approaches to tackling real life problems.

Hopefully, as you encounter new tools and techniques in this book the 
biological examples will convince you that they're useful things to know 
about. I have tried, for each new concept introduced, to point out why and
in what circumstances it is a better way of doing things than the way that 
you might already know. 

How to use this book
Picking the order of chapters in Python for Biologists was a 
straightforward affair, because the concepts and tools followed a natural 
progression. Picking the order of chapters for this book has been much 
trickier, because the features and techniques we are going to look at tend 
to be used together. In other words, whichever way I arrange the chapters,
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there are inevitably some cases where material from one chapter relies on
material from a later chapter. I've tried to minimize such cases, and have 
added footnotes to point out connections between chapters whenever 
possible. If there's a particular chapter that sounds interesting then it's 
fine to jump in and start reading there; just be aware that you'll probably 
have to skip around in the book a bit to fill in any gaps in your current 
knowledge. 

Chapters tend to follow a predictable structure. They generally start with 
a few paragraphs outlining the motivation behind the features that it will 
cover – why do they exist, what problems do they allow us to solve, and 
why are they useful in biology specifically? These are followed by the 
main body of the chapter in which we discuss the relevant features and 
how to use them. The length of the chapters varies quite a lot – 
sometimes we want to cover a topic briefly, other times we need more 
depth. This section ends with a brief recap outlining what we have 
learned, followed by exercises and solutions (more on that topic below).

The book assumes that you're familiar with all the material in Python for 
Biologists. If you have some Python experience, but haven't read Python 
for Biologists, then it's probably worth downloading a free copy and at 
least looking over the chapter contents to make sure you're comfortable 
with them. I will sometimes refer in the text or in footnotes to sections of 
Python for Biologists – rather than repeating the URL where you can get a 
copy1, I'll simply give it here: 

http://pythonforbiologists.com

1 If you're reading this book as an ebook (as opposed to a physical book) then you should have 
received a copy of Python for Biologists in your download. 
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Formatting
A book like this has lots of special types of text – we'll need to look at 
examples of Python code and output, the contents of files, and technical 
terms. Take a minute to note the typographic conventions we'll be using.

In the main text of this book, bold type is used to emphasize important 
points and italics for technical terms and filenames. Where code is mixed 
in with normal text it's written in a monospaced font like this 
with a grey background. Occasionally there are footnotes1 to provide 
additional information that is interesting to know but not crucial to 
understanding, or to give links to web pages. 

Example Python code is highlighted with a solid border and the name of 
the matching example file is written just underneath the example to the 
right:

Some example code goes here

example.py

Not every bit of code has a matching example file – much of the time we'll
be building up a Python program bit by bit, in which case there will be a 
single example file containing the finished version of the program. The 
example files are in separate folders, one for each chapter, to make them 
easy to find. 

Sometimes it's useful to refer to a specific line of code inside an example. 
For this, we'll use numbered circles like this :❶

a line of example code
another line of example code
this is the important line❶
here is another line

1 Like this.
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Example output (i.e. what we see on the screen when we run the code) is 
highlighted with a dotted border:

Some output goes here

Often we want to look at the code and the output it produces together. In 
these situations, you'll see a solid-bordered code block followed 
immediately by a dotted-bordered output block. 

Other blocks of text (usually file contents or typed command lines) don't 
have any kind of border and look like this:

contents of a file

Often when looking at larger examples, or when looking at large amounts 
of output, we don't need to see the whole thing. In these cases, I'll use 
ellipses (...) to indicate that some text has been missed out.

I have used UK English spelling throughout, which I hope will not prove 
distracting to US readers. 

In programming, we use different types of brackets for different purposes,
so it's important to have different names for them. Throughout this book, 
I will use the word parentheses to refer to (), square brackets to refer to [], 
and curly brackets to refer to {}.

Exercises and solutions
Each chapter is accompanied by one or more exercises and solutions. You 
can always download the most recent version of the exercise files and 
solutions from this address:

http://pythonforbiologists.com/index.php/exercise-files/ 
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The number and complexity of exercises differ greatly between chapters 
depending on the nature of the material. Compared to the exercises in 
Python for Biologists, the exercises in this book are fewer in number but 
more complicated. Many of the exercise problems are written in a 
deliberately vague manner and the exact details of how the solutions 
work is up to you (very much like real life programming!) You can always 
look at the solutions to see one possible way of tackling the problem, but 
there are often multiple valid approaches. 

I strongly recommend that you try tackling the exercises yourself before 
reading the solutions; there really is no substitute for practical experience
when learning to program. I also encourage you to adopt an attitude of 
curious experimentation when working on the exercises – if you find 
yourself wondering if a particular variation on a problem is solvable, or if 
you recognize a closely-related problem from your own work, try solving 
it! Continuous experimentation is a key part of developing as a 
programmer, and the quickest way to find out what a particular function 
or feature will do is to try it. 

The example solutions to exercises are written in a different way to most 
programming textbooks: rather than simply present the finished solution,
I have outlined the thought processes involved in solving the exercises 
and shown how the solution is built up step-by-step. Hopefully this 
approach will give you an insight into the problem-solving mindset that 
programming requires. It's probably a good idea to read through the 
solutions even if you successfully solve the exercise problems yourself, as 
they sometimes suggest an approach that is not immediately obvious. 

A note on setting up your environment
This book assumes that you have a working Python 2 or Python 3 
environment to work in, and that you're comfortable running programs 
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on the command line and editing them in a text editor. For notes on 
setting up your environment, see the introductory chapter in Python for 
Biologists. I've tried to ensure that all code samples and exercise solutions 
will work in both Python 2 and Python 3 – where there are differences 
between versions, I have noted it in the text.  

There are two chief differences that are relevant to multiple examples and
exercises. Firstly, to carry out floating point division in Python 2 we need 
to include the line 

from __future__ import division

at the start of our programs. Secondly, the way that we get input from the 
user is slightly different: in Python 3 we use the input function and in 
Python 2 we use the raw_input function. 

Joined-up programming
Finally, a quick note about synergy between chapters. When explaining 
new concepts, I've made the examples as simple as possible in the 
interests of clarity and avoided using multiple "advanced" techniques in a 
single example. For instance, in the chapter on object oriented 
programming I've given examples of class methods that don't use any of 
the techniques from other chapters. 

This makes it easier for the reader to concentrate on the new material 
while being able to easily understand the context. But it can lead to the 
misconception that these programming techniques are mutually 
exclusive. In fact, nothing could be further from the truth: the real power 
of the tools that we're going to be discussing comes when they are used 
together. So it's certainly possible, for example, to write a class (chapter 4)
that stores some data in a list of dicts (chapter 3) and has methods that 
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use recursion (chapter 2) and raise custom exceptions (chapter 7). You 
just won't see such code in the examples, because it wouldn't be a very 
good way of introducing the new material!

What's not covered
There are several topics that you might expect to find in an advanced 
programming book that are not here. In this book, I've focussed purely on 
aspects of the core Python language, and avoided talking about subjects 
that are more related to the development process. If you want to read 
about:

• Python's packaging and distribution system

• performance and speeding up code

• about automated testing

• building user interfaces

• logging

Then take a look at Effective Python development for Biologists by the same 
author. Where sections from that book are particularly relevant to 
sections here, I've tried to mention them in footnotes. 

Getting in touch
Learning to program is a difficult task, and my one goal in writing this 
book is to make it as easy and accessible as possible to get started. So, if 
you find anything that is hard to understand, or you think may contain an
error, please get in touch – just drop me an email at

 martin@pythonforbiologists.com
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Chapter 1: Introduction

and I promise to get back to you. If you find the book useful, then please 
also consider leaving an Amazon review to help other people find it.
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Chapter 2: Recursion and trees

2: Recursion and trees
A concise definition of recursion, when we're talking about programming 
languages, is this: writing code which calls itself.  If you've never 
encountered recursion before, this definition isn't very helpful, since it 
fails to answer two key questions: why is recursion useful, and how do we 
do it in Python?

The second question is straightforward to answer: Python has a very 
simple syntax for recursion that we'll see in the examples in this chapter. 

The first question is trickier to answer. Recursion is useful because it 
allows us to write code which solves problems which have a tree-like 
structure.  Much of the rest of this chapter is devoted to illustrating 
examples of biological problems that fall into this category, which turns 
out to include more types of problems than we might initially think.

We'll start with a problem that, at first, appears to have nothing to do with
trees.....

Recursively generating kmers
Many bioinformatics problems involve working with kmers: short DNA 
sequences of a given length (we usually refer to the length using the letter
k, hence the name). One obvious questions concerning kmers is this: 
given a length k, how can we generate a list of all the possible kmers of 
that length? If we pick a small value for k – for example, three –  then we 
can write a series of nested for loops to generate all possible sequences:
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def generate_trimers(): 
    bases = ['A', 'T', 'G', 'C'] 
    result = [] 
    for base1 in bases: 
        for base2 in bases: 
            for base3 in bases: 
                result.append(base1 + base2 + base3) 
    return result 

generate_3mers.py

In the above example, we have three nested for loops which iterate over 
the same list of four possible bases. The outer for loop defines the first 
base of the 3mer, the middle for loop defines the second base, and the 
inner for loop defines the third base.  Because each for loop repeats 
four times (one for each base) the append() line gets called 4x4x4 = 64 
times, so we end up with a list of all possible 3mers.

Suppose we wanted to modify this code to generate 4mers instead of 
3mers.  We would simply add another for loop inside the original three.  
But what if we wanted to write a function that would do the same job, but 
for any value of k – in other words, for sequences of any length? This is a 
very tricky problem. We know that we need to use a for loop to add bases
onto the end of a growing sequence, but the difficult part is making sure 
that we keep all the possible sequences between iterations. Here's one 
possible solution:

def generate_kmers(length): 
    result = [''] ❶
    for i in range(length): ❷
        new_result = [] ❹
        for kmer in result: 
            for base in ['A', 'T', 'G', 'C']: 
                new_result.append(kmer + base) ❸
        result = new_result ❺
    return result 

generate_kmers.py

11



Chapter 2: Recursion and trees

The function works in the following way: we start off with a list 
containing a single empty string – this is the starting point for each of our
final sequences  ❶ . Then, we extend each element in that list (initially just
one element, but as we'll see, the size of the list will grow) in an iterative 
process (controlled using a for loop and a range❷). To extend a 
sequence, we add each of the four possible bases onto the end❸. Because 
we want to end up with the final sequences (i.e. we don't want the 
intermediate steps) we have to create a new temporary list  to ❹ hold the 
extended sequences for each round of extension, and then use that list as 
the list of sequences for the next round❺.  After each iteration of the for 
loop, two thing happen: the results list contains four times as many 
elements as before (because we've added each of the four possible bases) 
and those elements are one base longer than before. 

Why does this function look so different to the generate_trimers() 
function?  In the generate_trimers() function we use nested loops to
generate the sequences, because we know in advance how long we want 
the sequences to be – three bases means that we need three nested loops. 
But in the function above, we can't use nested loops, because we don't 
know in advance how many loops we'll need. The number of loops 
depends on the length of the kmers. What we require is a way to 
express the idea of nesting code an arbitrary number of times. 

Recursion is the way to express this, but to understand it, we need to 
think about the problem in a slightly different way. Here's an English 
translation of the generate_kmers() function above:

"Start with a list containing a single empty string. Next, extend 
each element in the list by adding each of the four possible bases 
onto the end. Repeat this extension process as many times as 
necessary until the sequences are the length you require"

12
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That explanation is what we might call an imperative description of how to
generate all possible kmers of a given length.  It gives step-by-step 
instructions which we can follow to get the result we want. But there's 
another solution to the problem, which we can describe in a totally 
different way:

"To get a list of all kmers of a given length, start by checking the 
length. If the length is one then the result is simply a list of the 
four bases. If the length is more than one, take the list of all 
possible sequences whose length is one less that the length you're 
looking for, and add each of the four possible bases to each of its 
elements to get the result."

At first glance, this doesn't seem like a very helpful solution. Rather than 
telling us how to figure out the answer, it just describes what the 
answer looks like. And it assumes that we have a way to magically 
calculate the list of all possible sequences that are one base shorter than 
the length we want. But – remarkably – when we write a function using 
this description, it actually works:

def generate_kmers_rec(length): 
    if length == 1: ❶
        return ['A', 'T', 'G', 'C'] ❷
    else: 
        result = [] 
        for seq in generate_kmers_rec(length - 1): ❸
            for base in ['A', 'T', 'G', 'C']: ❹
                result.append(seq + base) 
        return result 

generate_kmers_recursive.py

To understand what's going on, here's the written description again 
showing which line of code corresponds to each bit:
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"If the length is one❶ then the result is simply a list of the four 
bases❷. To get the result when the length is more than one, take 
the list of all possible sequences whose length is one less that the 
length you're looking for❸, and add each of the four possible 
bases to it❹."

The magic occurs where the generate_kmers_rec() function calls 
itself❸. This is what we mean by a recursive function – one that calls 
itself (with different parameters) in order to generate its result. This is 
unintuitive, to say the least, the first time you encounter it!

Let's follow what happens step by step when we call the function with a 
length of three – i.e. when we evaluate generate_kmers_rec(3). The 
first thing that happens is that the function checks whether the length 
is equal to one. This turns out to be false (because the length is 3), so 
the else block is executed. A new empty list called result is created, 
and then the function calls generate_kmers_rec(2) in order to get 
the list of kmers of length 2. Inside the call to 
generate_kmers_rec(2), the first few steps repeat. We test whether 
the length variable is equal to one and when the answer is no, we enter 
the else block and create a new empty list called result. 

Note that at this point, we have two empty lists called result – one 
belonging to the generate_kmers_rec(3) call, and one belonging to 
the generate_kmers_rec(2) call. There is nothing out-of-the-
ordinary about this – we use multiple functions with the same variable 
names all the time in our code, and it works because of Python's scoping 
rules. 

Next, we need to figure out the list of all sequences of length one, so we 
make a call to generate_kmers_rec(1). At the start of this function 
call, we examine the length variable and find that it is equal to one, so 
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the function immediately returns the list ['A', 'T', 'G', 'C'] 
and the function call is over. Now the call to generate_kmers_rec(2) 
can carry on running. It takes that list, adds each of the four bases to each
of the four sequences to generate a list of the 16 dinucleotides, and 
returns that list. The list of dinucleotides is received by 
generate_kmers_rec(3), which finishes the job by adding each of the 
four bases to each of the 16 dinucleotides to create a list of 64 
trinucletoides, and returning it. 

When looking at a recursive function like the one above, an obvious 
question is: why doesn't the function run forever? If every time the function
is called, it calls itself again, then why don't we end up with an infinite 
number of function calls which never return1? In our example above, the 
answer lies in the special case where the length is one. We can see by 
looking at the function definition that each call to the function will 
trigger another call to the function unless the length is one.  Couple that 
fact with the fact that we decrease the length by one whenever the 
function calls itself, and we can see that whatever length is supplied as 
the argument to the initial function call, eventually the function will be 
called with a length of one, at which point the functions will start to 
return.

In general, these two criteria are necessary for any recursive function to 
work properly: there must be a special case that causes the function to 
return without calling itself, and there must be some guarantee that this 
special case will eventually be reached. 

In the introduction to this chapter, we said that recursion is good for 
solving problems that have a tree-like structure. The problem of 
generating all kmers of a given length is an example, although the tree-

1 It is actually quite easy to write functions that never return when getting started with 
recursive programming!
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like nature of the problem isn't obvious. To make it clearer, imagine the 
process of choosing a single 3mer by selecting one base at a time. At the 
start of the process, we have four options – four different branches – one 
for each base:

We choose one of these paths – for instance, the one labelled T – and then
are faced with four more branches:

This time we pick the branch labelled TG. Finally, we have a choice of four
different branches to end up at one of four different 3mers:
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Viewed like this, it's clear why we can consider this a tree-like problem: 
generating all possible kmers of a given length is equivalent to visiting all
the leaves of the tree. 

In the above example, there's not a clear winner between the iterative 
solution and the recursive solution – both are roughly equally easy to 
read. In the next section, we'll consider some data that are more explicitly
tree-like and see some examples of problems where recursion is clearly 
the best solution.

Processing tree-like data

Child-to-parent trees
Suppose we want to store some information about taxonomic 
relationships among primates. If we were describing the taxonomy of 
primates using natural language, here are two statements that we might 
make: "Homo sapiens is a member of the group Homo, which is a member of 
the group Homininae" and  "Primates contains two groups – Haplorrhini and 
Strepsirrhini". 

These two statements are similar – they are both talking about group 
membership – but they approach the problem of description in different 
ways. The first expresses the relationship in child to parent terms, and the 
second in parent to child. How might we store these relationships in a 
Python program? The first can be stored quite simply: we can create a 
dictionary which holds child  parent relationships:→

tax_dict = {
'Homo sapiens' : 'Homo', 
'Homo' : 'Homininae'

}

17
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In the above code we have a dictionary with two elements, each one 
describing a single child-to-parent relationship. 

Storing parent-to-child relationships looks a bit different. To store the 
second set of relationships we can create a list and store it in a variable:

primates_children = ['Haplorrhini', 'Strepsirrhini'] 

Note that this looks a little less satisfying – the name of the parent 
(Primates) is a variable name, while the names of the child taxa are 
strings. 

The outlook for parent-to-child relationships looks even worse when we 
start to consider how we would store additional relationships. To add the 
relationships from the first statement requires us to create two new 
variables:

primates_children = ['Haplorrhini', 'Strepsirrhini']
homo_children = ['Homo sapiens']
homininae_children = ['homo']

As before, we have an odd mixture of variable names and strings, and 
one-element lists for any parent that has only a single child. We can 
quickly see that adding more relationships under the parent-to-child 
scheme is going to result in some very unwieldy code!

By contrast, we can store all the relationships using the child-to-parent 
scheme by simply adding extra items to the dict:

tax_dict = {
'Homo sapiens' : 'Homo', 
'Homo' : 'Homininae',
'Haplorrhini' : 'Primates',
'Strepsirrhini' : 'Primates'

}

18
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Let's consider a bigger example. Here's a taxonomy showing a selection of 
primate taxa. Hopefully the meaning of the layout is obvious: child taxa 
are indented underneath their parent:

Primates
Haplorrhini

Simiiformes
Hominoidea

Pan troglodytes
Pongo abelii

Tarsiiformes
Tarsius tarsier

Strepsirrhini
Lorisidae

Loris tardigradus
Lemuriformes

Allocebus trichotis
Lorisiformes

Galago alleni
Galago moholi

Here's the corresponding dict, storing the relationships as key/value pairs 
just as before:

tax_dict = { 
'Pan troglodytes' : 'Hominoidea',       'Pongo abelii' : 'Hominoidea', 
'Hominoidea' :  'Simiiformes',          'Simiiformes' : 'Haplorrhini', 
'Tarsius tarsier' : 'Tarsiiformes',     'Haplorrhini' : 'Primates',
'Tarsiiformes' : 'Haplorrhini',         'Loris tardigradus' : 
'Lorisidae',
'Lorisidae' : 'Strepsirrhini',          'Strepsirrhini' : 'Primates',
'Allocebus trichotis' : 'Lemuriformes', 'Lemuriformes' : 
'Strepsirrhini',
'Galago alleni' : 'Lorisiformes',       'Lorisiformes' : 
'Strepsirrhini',
'Galago moholi' : ' Lorisiformes'
} 
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Even with some white space added to make the items in the dict line up, 
it's not particularly easy to read! Nevertheless, every relationship in the 
tree is also present in the dict, so we can be confident that it represents 
the whole taxonomy.

What can we do with this data structure once it's been created? Let's try 
writing a function that will list all the parents1 of a given taxon. When 
given the name of a taxon as input, it will return a list of all the taxa of 
which that taxon is a member. For example, given the input 'Galago 
alleni' it should return the list ['Lorisiformes', 
'Strepsirrhini', 'Primates']. If we know the number of 
ancestors of the node in advance, we can write a function that will do the 
job in a slightly clunky way:

def get_ancestors(taxon):
first_parent = tax_dict.get(taxon)
second_parent = tax_dict.get(first_parent)
third_parent = tax_dict.get(second_parent)
return[first_parent, second_parent, third_parent]

get_three_parents.py

We use the dictionary to look up the parent for the node, then use it again
to look up the parent of the parent, etc. etc. Obviously this will fail when 
we try to use it on a node that doesn't have exactly three ancestors. 

Here's an alternative way to write the function that doesn't rely on us 
knowing the number of ancestors in advance. We'll use a while loop to 
keep going up the tree until we reach Primates:

1 In the tree sense, not the biological sense!
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def get_ancestors(taxon):
result = [taxon] 
while taxon != 'Primates':

result.append(tax_dict.get(taxon))
taxon = tax_dict.get(taxon)❶

return result

get_parents_while.py

Notice how each time round the loop❶ we set the value of the taxon 
variable to be the name of the parent taxon, which then becomes the 
child in the next iteration of the while loop1.  

Here's another function that does the same job using recursion:

def get_ancestors(taxon):
if taxon == 'Primates': ❶

return [taxon] ❷
else:

parent = tax_dict.get(taxon) ❸
parent_ancestors = get_ancestors(parent) 
return [parent] + parent_ancestors ❹

get_parents_recursive.py

This uses a totally different approach to the previous examples. In this 
version of the function, we consider two different cases for the input 
taxon  ❶ . If the input taxon is 'Primates', then we know that it doesn't 
have any ancestors (i.e. it is at the top of the tree) so return a list 
containing just the taxon itself❷. If the taxon isn't 'Primates', then we 
know that the list of its ancestors is its parent, plus the ancestors of its 
parent. In this case we look up the parent❸ and then calculate the 
parent's ancestors – this is the recursive call. Finally we return the answer
we are looking for – a list made up of the parent, and the parent's 
ancestors❹. 

1 This is very similar to the way that the long sequences of a given iteration become the short 
sequences of the next iteration in our kmer example at the start of the chapter. 
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Just as in our kmers example, the recursive function works because there 
is a special case for which the function doesn't call itself (the case where 
the input taxon is 'Primates'). Let's see how this function works in detail 
by adding a few print() statements and calling it:

def get_ancestors(taxon):
print('calculating ancestors for ' + taxon)
if taxon == 'Primates':

print('taxon is Primates, returning an empty list')
return []

else:
print('taxon is not Primates, looking up the parent')
parent = tax_dict.get(taxon)
print('the parent is ' + parent + ' ')
print('looking up ancestors for ' + parent)
parent_ancestors = get_ancestors(parent)
print('parent ancestors are ' + str(parent_ancestors))
result = [parent] + parent_ancestors 
print('about to return the result: ' + str(result)) 
return result

get_ancestors('Galago alleni')

get_parents_verbose.py

This looks like a lot of extra code, but all we have done is added a 
temporary result variable to hold the result, and added a lot of print() 
statements. If we look at the output from this code we can see exactly 
what is going on:
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calculating ancestors for Galago alleni ❶
taxon is not Primates, looking up the parent 
the parent is Lorisiformes ❷
looking up ancestors for Lorisiformes 
calculating ancestors for Lorisiformes 
taxon is not Primates, looking up the parent 
the parent is Strepsirrhini 
looking up ancestors for Strepsirrhini 
calculating ancestors for Strepsirrhini 
taxon is not Primates, looking up the parent 
the parent is Primates 
looking up ancestors for Primates ❸
calculating ancestors for Primates 
taxon is Primates, returning an empty list 
parent ancestors are [] 
about to return the result: ['Primates'] 
parent ancestors are ['Primates'] 
about to return the result: ['Strepsirrhini', 'Primates'] 
parent ancestors are ['Strepsirrhini', 'Primates'] 
about to return the result: ['Lorisiformes', 'Strepsirrhini', 
'Primates'] 
['Lorisiformes', 'Strepsirrhini', 'Primates'] 

We start the function with the input 'Galago alleni'❶. We check if 
it's equal to 'Primates', and find that it's not so we look up the 
parent  ❷ and find out that it's 'Lorisiformes'. The next step in the 
code is to look up the ancestors for the parent, so we start the 
get_ancestors() function again, but this time with 'Lorisiformes'
as the input taxon. We continue in this way until we finally try to 
calculate the ancestors for 'Primates'❸. This time, rather than starting
off a new call to get_ancestors(), we return an empty string. This 
allows the call to get_ancestors('Lorisiformes') to return, which 
allows the previous call to get_ancestors() to return, and so on all 
the way back to the initial call. You can see from the output how all the 
"about to return the result" print() statements pile up near the end. 
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A handy way to visualize what's going on in recursive functions is to add 
spaces to the start of each print() statement to represent how many 
times the function has been called1. Here's a variation of our function that
does just that. We have to add an extra argument to store the depth of the
function call, which we increase by one each time we call the function 
(except for the initial call, where we supply a depth of 0):

def get_ancestors(taxon, depth):
spacer = '  ' * depth
print(spacer + 'calculating ancestors for ' + taxon)
if taxon == 'Primates':

print(spacer + 'taxon is Primates, returning an empty list')
return []

else:
print(spacer + 'taxon is not Primates, looking up the parent')
parent = tax_dict.get(taxon)
print(spacer + 'the parent is ' + parent + ' ')
print(spacer + 'looking up ancestors for ' + parent)
parent_ancestors = get_ancestors(parent, depth + 1)
print(spacer + 'parent ancestors are ' + str(parent_ancestors))
result = [parent] + parent_ancestors 
print(spacer + 'about to return the result: ' + str(result)) 
return result

get_ancestors('Galago alleni', 0)

get_parents_indented.py

In this version of the function, at the start of each function call we create 
a variable called spacer which is just a string of space characters, then 
print the spacer at the start of each line of output. Now the output clearly 
shows how the levels of function calls build up, then collapse:

1 The technical term for this is the depth of the call stack.
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calculating ancestors for Galago alleni 
taxon is not Primates, looking up the parent 
the parent is Lorisiformes 
looking up ancestors for Lorisiformes 
  calculating ancestors for Lorisiformes 
  taxon is not Primates, looking up the parent 
  the parent is Strepsirrhini 
  looking up ancestors for Strepsirrhini 
    calculating ancestors for Strepsirrhini 
    taxon is not Primates, looking up the parent 
    the parent is Primates 
    looking up ancestors for Primates 
      calculating ancestors for Primates 
      taxon is Primates, returning an empty list 
    parent ancestors are [] 
    about to return the result: ['Primates'] 
  parent ancestors are ['Primates'] 
  about to return the result: ['Strepsirrhini', 'Primates'] 
parent ancestors are ['Strepsirrhini', 'Primates'] 
about to return the result: ['Lorisiformes', 'Strepsirrhini', 
'Primates'] 

Parent-to-child trees
In the previous section, we started off by comparing two different ways of 
storing tree-like data, and concluded that storing child-to-parent 
relationships was easier than storing parent-to-child relationships. That's
certainly the case for the example code that we looked at, but here I want 
to introduce an approach that makes parent-to-child relationships look a 
lot better. 

Let's start with a simple question: why, in the examples in the previous 
section, could we use a dictionary to store child  parent relationships, →
but not parent  child relationships? Answer: because keys in a →

dictionary have to be unique, so we can't store multiple key value pairs for
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parents that have more than one child. In other words, we can't store the 
three children of Strepsirrhini like this:

tax_dict = {
'Strepsirrhini' : 'Lorisidae',
'Strepsirrhini' : 'Lemuriformes',
'Strepsirrhini' : 'Lorisiformes'

}

because the third item would overwrite the previous two. 

What we can do, however, is create a single item where the key is the 
name of the parent taxon, and the value is a list of the names of the child 
taxa1:

tax_dict = {
'Strepsirrhini' : ['Lorisidae', 'Lemuriformes','Lorisiformes']

}

Using this approach, we can store the exact same set of relationships as 
before in a parent  child manner:→

new_tax_dict = { 
    'Primates': ['Haplorrhini', 'Strepsirrhini'], 
    'Tarsiiformes': ['Tarsius tarsier'], 
    'Haplorrhini': ['Tarsiiformes', 'Simiiformes'], 
    'Simiiformes': ['Hominoidea'], 
    'Lorisidae': ['Loris tardigradus'], 
    'Lemuriformes': ['Allocebus trichotis'], 
    'Lorisiformes': ['Galago alleni','Galago moholi'], 
    'Hominoidea': ['Pongo abelii', 'Pan troglodytes'], 
    'Strepsirrhini': ['Lorisidae', 'Lemuriformes', 'Lorisiformes'] 
} 

Now we can start to address a problem that is a mirror of the one in the 
previous section: given a taxon, how do we find all its children? Just like 
before, we'll look at both iterative and recursive solutions. Here's an 

1 This idea – of storing a list in a dict – is explored in much more depth in the chapter on 
complex data structures.
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iterative function that returns a list of all the children of the taxon which 
is given as its argument:

def get_children(taxon): 
    result = [] 
    stack = [taxon] ❶
    while len(stack) != 0: 
        current_taxon = stack.pop() ❷
        current_taxon_children = new_tax_dict.get(current_taxon, []) 
        stack.extend(current_taxon_children) ❸
        result.append(current_taxon) ❹
 
    return result 

get_children.py

It's not the easiest function to read, so here's a line-by-line explanation. 
We start off by creating a list to hold the result and a list called stack1 
which will hold the names of the taxa that we need to consider❶. Initially,
the stack holds just one element – the taxon that was given as the 
argument.  We then enter a while loop which keeps executing as long as 
the length of the stack is positive – i.e. as long as the stack still holds 
some taxa to be processed. To process a taxon from the stack, we first 
remove it using pop()❷, then look up its children in the dictionary. We 
add any children that we find onto the end of the stack❸ and then add 
the taxon itself to the result❹.

Here's some code that calls the function on a couple of different input 
taxa:

print(get_children('Strepsirrhini')) 
print(get_children('Lorisiformes')) 

And here's the output. The result of the first call is wrapped over two lines
as it's too long to fit on the page, but it's still just a single list. Notice that 

1 A stack is the traditional computer science name for a list where elements are added and 
removed from the top – picture a stack of dinner plates. 
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the input taxon is included in the list – we could modify the function to 
remove it, but it's not important for the purposes of this discussion:

['Strepsirrhini', 'Lorisiformes', 'Galago moholi', 'Galago 
alleni', 'Lemuriformes', 'Allocebus trichotis', 'Lorisidae', 
'Loris tardigradus'] 
['Lorisiformes', 'Galago moholi', 'Galago alleni'] 

The best way to understand how the function works is to picture the fate 
of a single taxon as we encounter it. Each taxon is first added onto the 
stack variable at the point where we are processing its parent. It is then 
(at some point in the future) transferred from the stack variable to the 
result variable, having its own children added to the stack variable in 
the process. In this manner, taxa are repeatedly added onto and removed 
from the stack, until the stack is empty, the while loop ends and the 
function can return. 

Contrast the code above with the recursive function:

def get_children_rec(taxon): 
    result = [taxon] ❶
    children = new_tax_dict.get(taxon, []) ❷
    for child in children: 
        result.extend(get_children_rec(child)) ❸
    return result 

get_children_recursive.py

Here, we create a single result list❶, which at the start of the function 
contains just the taxon that was given as the argument. The, we look up 
the children of that taxon  ❷ , and for each child, we add its children to the
result using a recursive function call❸. Then we simply return the list. Or 
in other words:

"The list of all children of a taxon is the taxon itself plus, for each 
child, a list of their children"
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Why is the recursive solution so much simpler and clearer than the iterate
solution for this case?  One way to look at it to consider the nature of a 
tree-like data structure such as the one we're using to store the taxonomy.
We can describe a taxonomic tree is like this: a node in a tree has a name 
and some children. The children of a node are also nodes themselves. The 
description of a tree is itself recursive – we cannot describe the children 
of a node without referring to the definition of a node. In other words, a 
node can have children, and those children are also nodes that can have 
children, and those children are also nodes, etc. etc. When we are dealing 
with a data structure that is fundamentally recursive, like a taxonomic 
tree, we shouldn't be surprised to find that the best ways to manipulate it 
also turn out to be recursive. 

Recap
We started this chapter by comparing two different ways to generate lists 
of all possible DNA sequences of a given length. In doing so, we came 
across the idea of a recursive function – one that calls itself on a simpler 
version of the input. We saw that recursive functions have two important 
properties: a special condition under which they don't call themselves, 
and an assurance that the special condition will eventually be reached – 
usually when the simplification of the input reaches its limit. Using 
recursion to solve the kmer-generating problem revealed its tree-like 
structure.

We then looked at a couple of different ways of storing tree-like data in 
Python and discovered that, under the right circumstances, both 
parent → child and child → parent schemes can be useful1. We examined 
two common tree operations – finding lists of parents, and finding lists of 

1 See the section on nested lists in the chapter on complex data structures for another way of 
storing tree data. 
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children – and showed how they can both be carried out using either 
iterative or recursive functions. Although we were investigating these 
operations in the context of taxonomic relationships, they are actually 
applicable to many different tree-like data types. 
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Exercise

Last Common Ancestor
A very common operation involving trees is identifying the Last Common 
Ancestor (LCA) of a group of nodes. In programming, we refer to the last 
common ancestor in a structural sense, rather than a biological one. For 
example, in our primates tree, the last common ancestor of Pan 
troglodytes and Tarsius tarsier is Haplorrhini. 

Write a function that will take two arguments – a dictionary of child  →
parent relationships as described earlier in the chapter, and a list of taxa –
and return the last common ancestor of the taxa. See if you can come up 
with both an iterative solution and a recursive one. 

Hint: one approach to finding the last common ancestor of a list of taxa is
as follows … find the last common ancestor of the first and second taxa 
and call that LC1. Then find the last common ancestor of LC1 and the 
third taxon and call that LC2. Then find the last common ancestor of LC2 
and the fourth taxon etc. etc. The final last common ancestor will also be 
the last common ancestor of all the taxa in the list. 
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Solution

Last Common Ancestor
The hint gives us a pretty big clue that the solution to this problem is 
split into two parts: writing a function that will calculate the last common
ancestor of any two given taxa, and then turning that into a function that
will calculate the last common ancestor of a list of any number of taxa. 

Let's tackle the two-taxon case first. A simple way to find the last common
ancestor of two taxa is as follows: get a list of the parents of the first 
taxon, and a list of the parents of the second taxon, and then find the first
taxon that occurs in both lists of parents. 

Let's try an example from the tree of primates earlier in the chapter. Say 
we want to find the last common ancestor of Pan troglodytes and Tarsius 
tarsier. First we generate lists of parents for each of the two taxa. The 
parents of Pan troglodytes are 

['Hominoidea', 'Simiiformes', 'Haplorrhini', 'Primates'] 

and the parents of Tarsius tarsier are

['Tarsiiformes', 'Haplorrhini', 'Primates']

Looking through both lists, we can see that the first taxon that occurs in 
both is 'Haplorrhini'. 

Implementing this as a function is quite straightforward. We already have
a function that returns a list of parents from earlier in the chapter, so 
we'll use that to generate the two lists of parents1. The easiest way to 

1 It doesn't matter whether we use the iterative or recursive version.
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identify the first taxon that appears in both lists is to go through the 
second list one element at a time and return as soon as we find an 
element that's also in the first list:

def get_lca(taxon1, taxon2): 
    taxon1_ancestors = [taxon1] + get_ancestors_rec(taxon1) 
    for taxon in [taxon2] + get_ancestors_rec(taxon2): 
        if taxon in taxon1_ancestors: 
            return taxon 

We'll check that it works by calling it with a couple of different pairs of 
taxa:

print(get_lca('Pan troglodytes','Tarsius tarsier')) 
print(get_lca('Pan troglodytes','Pongo abelii')) 
print(get_lca('Pan troglodytes','Strepsirrhini')) 

and taking a look at the output:

Haplorrhini 
Hominoidea 
Primates 

There are a couple of subtleties to getting the implementation just right. 
Note that the two input taxa don't have to have an equal number of 
parents – in the third function call we ask for the last common ancestor of
a species (Pan troglodytes) and a suborder (Strepsirrhini) and the function 
still returns the correct answer. Also, we have to make sure that the list of 
ancestors to be considered for a taxon includes the taxon itself (hence the
inclusion of the single-element list [taxon]  in lines 2 and 3). That's 
necessary in order for the function to return the correct answer when one 
of the input taxa is a direct descendent of the other – for example 
get_lca("Haplorrhini", "Pan troglodytes"). The reason for 
this requirement will become clear soon!
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Now for the interesting part – writing a function that uses the above 
function to find the last common ancestor for a list of taxa. As suggested 
in the problem description, we'll try both an iterative and a recursive 
solution. For the iterative solution, we'll remove taxa from the list one by 
one and repeatedly find the last common ancestor of the current taxon 
and the current last common ancestor. Here's the code for a function that 
implements this approach, along with a test function call:

def get_lca_list(taxa): 
    taxon1 = taxa.pop() 
    while len(taxa) > 0: 
        taxon2 = taxa.pop() 
        lca = get_lca(taxon1, taxon2) 
        print('LCA of ' + taxon1 + ' and ' + taxon2 + ' is ' + lca) 
        taxon1 = lca 
    return taxon1 

print(get_lca_list(['Pan troglodytes','Tarsius tarsier', 'Pongo 
abelii']))

get_lca_iterative.py

If we take a look at the output we can see what's happening:

LCA of Pongo abelii and Tarsius tarsier is Haplorrhini 
LCA of Haplorrhini and Pan troglodytes is Haplorrhini 
Haplorrhini 

In the first iteration of the while loop, taxon1 is 'Pongo abelii' 
and taxon2 is 'Tarsius tarsier'1. We then use the get_lca() 
function defined previously to calculate the last common ancestor of 
these two taxa, and get the result 'Haplorrhini'. This is assigned to 
the variable taxon1. Now we enter the second iteration of the while 
loop, remove the last (and only remaining) element from the taxon list 
(which is 'Pan troglodytes') and assign it to the variable taxon2.  

1 Remember that the pop method takes the last element from a list. 
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We use the get_lca() function to determine the last common ancestor 
of 'Haplorrhini' and 'Pan troglodytes', which is 
'Haplorrhini'1. We assign this to taxon1. Now there are no 
remaining elements in the taxon list, the while loop ends and we return 
(and subsequently print) the value of taxon1, which for this function call
is 'Haplorrhini'.

Now let's try a recursive version. Just like with the previous examples, 
we'll need a plain English description to start with. How about this:

"To find the last common ancestor of a list of taxa, look at the size 
of the list. If there are only two taxa, then the answer is the last 
common ancestor of those two. If there are more than two, then 
remove the first taxon and call it taxon1, find the last common 
ancestor of the remaining items and call it taxon2, then the 
answer is the last common ancestor of taxon1 and taxon2."

And here's the code:

def get_lca_list_rec(taxa): 
    print("getting lca for " + str(taxa)) 
    if len(taxa) == 2: 
        return get_lca(taxa[0], taxa[1]) 
    else: 
        taxon1 = taxa.pop() 
        taxon2 = get_lca_list_rec(taxa) 
        return get_lca(taxon1, taxon2) 

get_lca_recursive.py

Let's analyse how this function works in terms of the requirements for 
recursive functions that we saw earlier in the chapter. First, the special 
case: for this function, the special case (for which the function doesn't 
call itself) occurs when the list of taxa is has only two elements. For this 

1 This is the reason why our get_lca function has to work correctly when one of the 
arguments is also the result. 
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special case, we can find the last common ancestor of the list by using the 
existing get_lca() function. Second, the simplification process: for 
this function, the simplification takes place because one taxon is removed
from the list at each function call. This guarantees that the special case 
will eventually be reached. 

When looking at the solution code in the exercises folder, pay attention to
the structure. There are three separate functions: one which calculates a 
list of ancestors for a single taxon, one which calculates the last common 
ancestor for a pair of taxa, and one which calculates the last common 
ancestor for a list of many taxa.

The two solutions we came up with above above show quite nicely the 
relative strengths and weaknesses of the iterative and recursive 
approaches. The recursive approach is easier to read and provides less 
scope for bugs, but the execution logic can be hard to follow if you're not 
used to recursion. The iterative approach, on the other hand,  requires the
programmer to carefully manage the taxon list. In the end, the choice of 
recursion or iteration to solve a given problem is in the hands of the 
programmer, and often comes down to how you feel more comfortable 
expressing the solution to a problem. Arguably, iterative programming 
involves telling the computer how to find the solution to a given 
problem, whereas recursive programming involves telling the computer 
what the solution looks like. 
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3: Complex data structures
In Python for Biologists, we spent quite a bit of time looking at different 
ways of storing data. Lists and dicts both had entire chapters devoted to 
them, and we used both dicts and lists extensively in the examples and 
exercises. For the material covered in this book, however, we need to dig a 
bit deeper into Python's data structures – in particular, we need to 
familiarize ourselves with the idea of complex data structures, and to 
introduce a few new types we haven't seen before.

Tuples
Tuples are a built in type of data structure that are part of the core Python
distribution. At first glance, tuples appear very similar to lists – they have 
multiple elements, we can retrieve single element using square brackets, 
and we can iterate over the elements of a tuple. The only apparent 
difference is that we define them using parentheses rather than square 
brackets:

t = (4, 5, 6)
print t[1] 
for e in t:
    print(e+1) 

tuple.py

5
5
6
7

Our first clue about the role of tuples comes when we try to change one of
the elements:

37



Chapter 3: Complex data structures

t[1] = 9

and are faced with an error:

TypeError: 'tuple' object does not support item assignment 

The reason for this error is that a tuple cannot be changed once it has 
been created. Not only are we not allowed to change one of the elements, 
but we also can't append or remove elements, reverse or sort the 
elements, or carry out any other operation that changes the tuple. Data 
structures that have this property are said to be immutable1. 

It's not clear at first why this is a useful property to have – surely the 
point of variables is that they should be able to vary? But there are 
advantages to using tuples in some situations. Knowing that the value of 
a particular variable can't change after assignment can make it easier to 
reason about the behaviour of your code2, and can allow Python to make 
certain optimizations which can sometimes result in faster or more 
memory-efficient code. Also, being immutable allows tuples to be used as 
the keys to a dict – something which is not possible with lists. 

As a rule, tuples work well for heterogeneous data: sequences of elements 
which represent different bits of information, and where the position of 
each element tells you something about what the element stores. For 
example, here's a bit of code that creates a number of 3-element tuples to 
represent DNA sequence records. Each tuple stores a sequence, an 
accession number, and a genetic code, and they are always in the same 
order:

1 Strings are also immutable in Python, which seems odd but doesn't generally cause problems. 
2 This is a similar idea to that of pure functions – see the chapter on functional programming 

for more discussion. 
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t1 = ('actgctagt', 'ABC123', 1)
t2 = ('ttaggttta', 'XYZ456', 1)
t3 = ('cgcgatcgt', 'HIJ789', 5)

It's often helpful to think of tuples as representing records, or rows from a
table1. In contrast, lists are better for storing homogeneous data, where 
each element represents the same kind of thing. We'll encounter tuples 
elsewhere in this book and will use them, when appropriate, in examples. 

Sets
A fairly frequent task in programming is to keep a list of items that share 
some common property. For example, imagine we are writing a program 
that processes a long list of accession numbers:

for acc in accessions:
    # do some processing

We suspect that our list accessions may contain duplicate elements. 
We want to avoid processing the same accession number multiple times, 
so we need to keep a record of which accession numbers have already 
been processed. We might be tempted to create a list to hold the 
processed accession numbers, and check it before processing each new 
one:

processed = []
for acc in accessions:
    if not acc in processed:
        # do some processing
        processed.append(acc)

The problem with this approach is that the operation of testing whether a
particular value is in a list takes a long time if the list is large. The above 

1 Or, if you're familiar with object oriented programming, lightweight immutable objects.
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code will start out fast, but as the size of the processed list grows, so 
will the time required to check it on each iteration. 

A faster alternative is to use a dict. We know that it's very quick to look up
a value in a dict, so this approach will be much faster1:

processed = {}
for acc in accessions:
    if not acc in processed:
        # do some processing
        processed[acc] = 1

However, it's still not quite satisfactory – we are wasting a lot of memory 
storing all those values, all of which are 1, which we never look up. 

Python's set type is like a dict that doesn't store any values – it simply 
stores a collection of keys and allows us to very rapidly check whether or 
not a particular key is in the set. Using a set is straightforward; we create 
an empty one using the set() function, add elements to it using add(), 
and check if a given element is in the set using in():

processed = set()
for acc in accessions:
    if not acc in processed:
        # do some processing
        processed.add(acc)

We can also create a non-empty set by enclosing the elements in curly 
brackets:

set = {4,7,6,12}

Although this looks very similar to the way that we create a dict, it's easy 
to spot the difference – inside the brackets are individual elements, not 
key-value pairs. 

1 On my computer it's around one thousand times faster when processed holds a million 
elements. 
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Sets also have various useful methods for carrying out set operations like
intersections, differences and unions, and can very quickly answer 
questions like "are all elements in my first set also in my second set?". 

See the chapter on performance in Effective Python development for 
biologists for an in-depth look at the relative speed of lists and sets for 
different jobs. 

Lists of lists
Let's look at a couple of examples of lists:

[1,2,3,4]
['a', 'b', 'c']

You've almost certainly encountered lists of numbers and strings like this 
in your programming so far. However, we're certainly not restricted to 
numbers and strings when constructing lists: we can make a list of file 
objects:

[open('one.txt'), open('two.txt')]

or a list of regular expression match objects:

import re
[re.search(r'[^ATGC]', 'ACTRGGT'), re.search(r'[^ATGC]', 'ACTYGGT')]

In fact, the elements of a list can be any type of value – including, 
interestingly, other lists:

[[1,2,3],[4,5,6],[7,8,9]]

# more readably
[[1,2,3],
 [4,5,6],
 [7,8,9]]
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The data structure in the code above is a list of lists, sometimes known as 
a two-dimensional list. It may help to think of it like a table or a 
spreadsheet, where the elements of the outer list are rows, and the 
elements of the inner lists are cells. Although it looks weird, a list of lists 
behaves just like any other list. We can retrieve a single element using the
normal syntax:

lol = [[1,2,3],[4,5,6],[7,8,9]]
print(lol[1])
# prints [4,5,6]

and then manipulate the returned list in exactly the same way:

lol = [[1,2,3],[4,5,6],[7,8,9]]
l = lol[1]
print(l[2])
# prints 6

We can also use a convenient shorthand to retrieve a single element 
directly from one of the inner lists: we just use two consecutive sets of 
square brackets:

lol = [[1,2,3],[4,5,6],[7,8,9]]
print(lol[1][2])
# prints 6

Multi-dimensional data structures are very useful in programming. 
Imagine storing a multiple sequence alignment as a list of lists:

aln = [['A', 'T', '-', 'T', 'G'], 
       ['A', 'A', 'T', 'A', 'G'], 
       ['T', '-', 'T', 'T', 'G'], 
       ['A', 'A', '-', 'T', 'A']] 

We can get an entire aligned sequence by retrieving a single element of 
the outer list:
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seq = aln[2]

or get the character at a particular position using two sets of square 
brackets:

char = aln[2][3]

or get an entire column by retrieving a particular position for each inner 
row1:

col = [seq[3] for seq in aln]

Lists of dicts and lists of tuples
In a similar way, we can create lists of dicts and tuples. We can use lists of 
dicts or lists of tuples to store collections of related records – for example,
here's our collection of DNA sequence records from earlier in the chapter 
stored as a list of dicts:

records = [
    {'name' : 'actgctagt', 'accession' : 'ABC123', 'genetic_code' : 1},
    {'name' : 'ttaggttta', 'accession' : 'XYZ456', 'genetic_code' : 1},
    {'name' : 'cgcgatcgt', 'accession' : 'HIJ789', 'genetic_code' : 5}
]

list_of_dicts.py

The dicts that make up the elements of this list are different from most of
the ones we've seen before in two important ways. Firstly, they don't have 
names – in other words, they are not assigned to a variable (we call values
like this anonymous, so each element of the list is an anonymous dict). This
looks strange because we're used to storing dicts in variables, but in fact 

1 Take a look at the chapter on generators for an explanation of this particular bit of syntax. 
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it's no stranger than the fact that the elements of the list [1,2,3] are 
anonymous integers. 

Secondly, each value in one of the dicts above represents a different type 
of information – a DNA sequence, an accession number, and a genetic 
code – and they are a mixture of strings and numbers. In previous 
examples where we've used dicts, they've been storing pairs of data where 
each pair stores the same kind of thing – for example, restriction enzyme 
names and their cut motifs:

enzymes = {
    'EcoRI' : r'GAATTC',
    'AvaII' : r'GG(A|T)CC',
    'BisI'  : r'GC[ATGC]GC'
}

In the dicts that comprise the elements of our list, the data are stored 
very differently: the keys are simply labels which describe their values. 

Just as with lists of lists, we can refer to an entire dict just by giving its 
index:

one_record = records[2]

but we're usually more interested in iterating over the dicts. The use of 
label-type keys leads to a very readable way of processing the dicts – for 
example, to print out the accession number and genetic code for each 
record:

for record in records:
    print('accession number : ' + record['accession'])
    print('genetic code: ' + str(record['genetic_code'])) 

list_of_dicts.py
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accession number : ABC123 
genetic code: 1 
accession number : XYZ456 
genetic code: 1 
accession number : HIJ789 
genetic code: 5 

Recall from the earlier in the chapter that tuples are good for storing this 
kind of heterogeneous data. We could also store our collection of records 
using a list of tuples:

records = [
    ('actgctagt', 'ABC123', 1),
    ('ttaggttta', 'XYZ456', 1),
    ('cgcgatcgt', 'HIJ789', 5)
]

list_of_tuples.py

which avoids the need to store strings like 'accession' multiple times, 
and instead relies on the ordering of the elements in each tuple to 
identify them. We can refer to individual elements of each tuple using the
index:

for record in records:
    print('accession number : ' + record[1])
    print('genetic code: ' + str(record[2])) 

Alternatively, a common idiom in Python is to assign all the elements of a
tuple to temporary variables in one statement, then use those variables to
refer to pieces of information from the current record:

for record in records:
    (this_sequence, this_accession, this_code) = record
    print('accession number : ' + this_accession)
    print('genetic code: ' + str(this_code)) 

list_of_tuples.py
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This is known as unpacking the tuple, and leads to very readable code 
when the number of elements in the tuple is small. 

Other complex structures
So far in this chapter we have mentioned four different types of 
collections (in Python these are known collectively as sequences, not to be
confused with the DNA and proteins that we call sequences in biology): 
lists, tuples, dicts and sets. The mathematically-inclined reader will 
already have realized that for two-dimensional nested data structures 
there are sixteen possible combinations. Rather than run through all the 
possible variations (sets of dicts, tuples of lists, etc.) we will round out 
this chapter by concentrating on a few of the more useful ones. The rapid 
lookup of values from keys offered by dicts makes them very useful for 
nested data structures, so our last few examples will involves dicts of sets,
tuples and lists, plus one more complex structure of particular interest to 
biologists: arbitrarily-nested lists. 

Dicts of sets
When we are dealing with multiple sets in a program, storing them all in a
dict offers a convenient way to label them without creating a bunch of 
extra variables. Imagine we have collected lists of genes (identified by 
accession numbers) that are over-expressed by some organism of interest 
when exposed to various types of heavy metal contaminants. We'll store 
the gene lists as a dict of sets, where the keys of the dict are the names of 
the heavy metals, and the values are the sets of genes1:

1 Obviously, in a real life analysis these would be created by reading the gene lists from a file 
rather than hard-coding them.
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gene_sets = {
    'arsenic' : {1,2,3,4,5,6,8,12},
    'cadmium' : {2,12,6,4},
    'copper' : {7,6,10,4,8},
    'mercury' : {3,2,4,5,1}
}

dict_of_sets.py

This allows us to ask various questions: for example, is gene 3 over-
expressed in response to arsenic?

3 in gene_sets['arsenic']
# True

Which conditions is gene 5 over-expressed in?

for metal, genes in gene_sets.items(): 
    if 5 in genes: 
        print(metal) 

mercury
arsenic

or more concisely using a list comprehension1:

print([metal for metal,gene_list in gene_sets.items() if 5 in 
gene_list])
# prints ['mercury', 'aresenic']

We can take advantage of set methods to do more sophisticated 
processing as well. The set method issubset will tell us whether one set
is a subset of another – in other words, are all the elements in set_one 
also in set_two:

set_one.issubset(set_two)

1 See the chapter on comprehensions for an explanation of this syntax
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We can use two loops to iterate over our dict and carry out a pairwise 
comparison of our gene sets to identify conditions where all the over-
expressed genes are also over-expressed in some other condition:

for condition1,set1 in gene_sets.items(): 
     for condition2,set2 in gene_sets.items(): 
         if set1.issubset(set2) and condition1 != condition2: 
             print(condition1 + ' is a subset of ' + condition2)     

dict_of_sets.py

mercury is a subset of arsenic 
cadmium is a subset of arsenic 

Dicts of tuples
Think back to the examples we looked at earlier in the chapter for storing 
a collection of DNA sequence records. We saw how these data could be 
stored using a list of tuples:

records = [
    ('actgctagt', 'ABC123', 1),
    ('ttaggttta', 'XYZ456', 1),
    ('cgcgatcgt', 'HIJ789', 5)
]

This approach worked well when we wanted to iterate over the records, 
but is not very good if we want to retrieve a specific record. Finding a 
record for which we know the accession number, for example, requires us 
to look at each record in turn until we find the one we want:

for record in records:
    if records[1] == 'XYZ456':
        # do something with the record
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This is not only an extra chunk of typing, but the time required to carry 
out the search will grow linearly with the number of records. 

If we know that we're frequently going to want to look up a record using a 
particular element – and, importantly, we are confident that element is 
unique to each record – we can store the data as a dict of tuples instead. 
To do this, we take the tuple element that uniquely identifies each record,
and turn it into the key in a dict. The remaining tuple elements are the 
value:

records = {
    'ABC123' : ('actgctagt', 1),
    'XYZ456' : ('ttaggttta', 1),
    'HIJ789' : ('cgcgatcgt', 5)
}

dict_of_tuples.py

Now looking up the record for an accession is simply a matter of using the
usual dict get method:

my_record = records.get('XYZ456')

and we can even combine this with tuple unpacking to achieve a very 
clear, readable syntax:

(my_sequence, my_code) = accession.get('XYZ456')

Dicts of lists
One of the frustrations that beginners tend to run into when using dicts is
the restriction that keys must be unique. At first glance, this makes dicts 
seem a lot less useful than they ought to be, as often in programming we 
want rapid lookup of multiple values associated with a single key. Using 
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lists as the values in a dict offers a way round this restriction, and exposes
the full usefulness of dicts. 

Let's look at an example we've seen before in Python for Biologists: kmer 
counting. Previously, our goal has always been to count the number of 
times each kmer appears in a given DNA sequence, and we've usually 
ended up with a dict where the keys are the kmers and the values are the 
counts. But what if we're interested not just in the number of times a 
particular kmer occurs, but in the positions where it occurs? Let's remind 
ourselves of the standard way we're used to tackling this problem:

dna = 'aattggaattggaattg'
k = 4
kmer2count = {}
for start in range(len(dna) - k + 1): ❶
    kmer = dna[start:start + k] ❷
    current_count = kmer2count.get(kmer, 0) ❸
    kmer2count[kmer] = current_count + 1 ❹
print(kmer2count)

In the above code we iterate over each possible start position using a 
range❶ and extract the kmer❷. We then look up the current count for 
that kmer from the dict❸, using a default value of zero if the kmer isn't 
already in the dict. Finally, we update the value in the dict for the kmer to 
be the current count plus one❹. We can see from the output that the 
result of running the code is a dict where the keys are kmers and the 
values are counts:

{'ggaa': 2, 'aatt': 3, 'tgga': 2, 'gaat': 2, 'attg': 3, 'ttgg': 
2}

Modifying this code to store positions is quite straightforward. Rather 
than building up a dict where each value is a count, we will build up a dict
where each value is a list of start positions. To do this, our default value 
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for a kmer that isn't currently in the dict will be an empty list, and rather 
than adding one to the count in each iteration, we'll append a position to 
the list:

dna = 'aattggaattggaattg'
k = 4 
kmer2list = {} 
for start in range(len(dna) - k + 1): 
    kmer = dna[start:start + k] 
    list_of_positions = kmer2list.get(kmer, []) 
    list_of_positions.append(start) 
    kmer2list[kmer] = list_of_positions 
print(kmer2list)

dict_of_lists.py

As we can see from the output, what we end up with is a dict of lists:

{'ggaa': [4, 10], 'aatt': [0, 6, 12], 'gaat': [5, 11], 'tgga': 
[3, 9], 'attg': [1, 7, 13], 'ttgg': [2, 8]}

Notice how the order that the elements are stored in the dict bears no 
relation to the order of the start positions – remember, dicts have no 
inherent ordering. We can manipulate the items in the dict using 
standard tools, as long as we remember that every value is itself a list. For
example, we can reconstruct our dict of kmer counts from the dict of start
positions using a dict comprehension1 which asks for the length of each 
start position list:

counts = {kmer: len(starts) for kmer, starts in kmer2list.items()})

1 See the chapter on comprehensions for a discussion of how this works. 
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Trees as nested lists
The data structures we've looked at so far in this chapter have all been 
two-dimensional: they have only two layers of collections before we reach
the non-collection elements. It's perfectly possible to create higher-
dimensional data structures in Python – lists of dicts of lists, sets of lists 
of tuples, etc. – but such structures are rarely helpful as they make it 
harder to think about the transformations that we want to apply to them. 
If, in the course of solving a programming problem, you find yourself 
reaching for a 3- or 4-dimensional data structure, then it's probably a 
good idea to encapsulate some of the complexity in an object. 

There's one exception to this rule, though: arbitrarily nested lists offer 
quite a natural way to describe treelike data. Consider the standard 
Newick format1 for representing phylogenetic trees:

(dog,(raccoon,bear),((sea_lion,seal),((monkey,cat),weasel)));

If we replace the parentheses with square brackets and put quotes around 
the names of the taxa, we get a valid bit of Python code that describes a 
nested set of lists:

['dog', ['raccoon','bear'], [['sea_lion','seal'],['monkey','cat'], 
'weasel']]

Splitting the list definition over multiple lines doesn't change it, but 
makes it easier to read, and shows the tree-like structure a bit better:

1 http://evolution.genetics.washington.edu/phylip/newicktree.html
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[
  'dog', 
  [
    'raccoon','bear'
  ], 
  [
    [
      'sea_lion','seal'
    ],
    [
      'monkey','cat'
    ],
    'weasel'
  ]
]

This particular tree is represented as a 3-dimensional list, and the 
internal structure is different from the other nested lists we have been 
looking at – the number of levels of nesting is different for different 
elements. The first element of the top-level list is a simple string 
('dog'), the second element is a list (['racoon', 'bear']) and the 
third element is itself a nested list ([['sea_lion','seal'],
['monkey','cat'], 'weasel']). 

This way of representing a tree has some interesting properties when 
compared with other approaches. To discuss them, we need to make 
extensive use of recursive functions, so make sure that you've read the 
chapter on recursion before reading the rest of this section. 

Let's start by writing a recursive function to determine whether a 
particular subtree contains a given leaf node1:

1 An alternative way to do this would be simply to flatten the list (i.e. turn it into a one-
dimensional list) and look for the element. 
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def contains(my_list, target): 
    result = False ❶
    for element in my_list: 
        if isinstance(element, list): ❷
            if contains(element, target): 
                result = True ❸
        else: 
            if element == target: 
                result = True ❸
    return result 

leaf_in_subtree.py

We start off by defining a variable to hold the result, which will be False 
by default❶. The function then looks at each element in the input list and
asks whether or not that element is itself a list using the isinstance() 
function❷. If it is a list, then it recursively calls itself on the element to 
check if it contains the target. If not then it determines whether the 
element is the target that we're looking for. If either of these possibilities 
is true, then we know that the list does contain the target, so the result is 
set to True❸. If it gets to the end of the input list without finding the 
target, then the result remains False. Either way, the value of result is 
returned. 

Because the function is recursive we can use it on nested lists of any 
depth and elements of any type:

assert contains([1,2,3], 2)
assert contains([1,[2,3],[4,5], 5])
assert contains([['sea_lion','seal'],['monkey','cat'], 'weasel'], cat)

We can also use it to answer interesting phylogenetic questions. Here's a 
recursive function that iterates over all possible sublists of an input list 
(representing subtrees of a phylogenetic tree) and assembles a collection 
of all the sublists that contain two particular taxa:
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def find_subtrees(my_list, taxon1, taxon2): 
    result = [] 
    if contains(my_list, taxon1) and contains(my_list, taxon2): ❶
        result.append(my_list) 
    for sublist in my_list: ❷
        if isinstance(sublist, list): 
            result.extend(find_subtrees(sublist, taxon1, taxon2)) ❸
    return result 

The way that the function works requires recursive thinking to 
understand. First it determines whether the input list contains both of the
taxa❶ and, if so, adds it to a result list. Then it iterates over each element 
in the input list❷ and, if that element is itself a list, calls the 
find_subtrees() function recursively on it and adds the returned 
value to the result list❸. 

The output of this function is a list, each element of which is a sublist of 
the input list. Here's an example –  we'll ask for all the sublists of our tree 
that contain both 'monkey' and 'cat':

tree = ['dog', ['raccoon','bear'], [['sea_lion','seal'],
['monkey','cat'], 'weasel']]
for subtree in find_subtrees(tree, 'monkey', 'cat'):
    print('subtree ' + str(subtree) + ' contains monkey and cat') 

subtree ['dog', ['raccoon', 'bear'], [['sea_lion', 'seal'], 
['monkey', 'cat'], 'weasel']] contains monkey and cat 

subtree [['sea_lion', 'seal'], ['monkey', 'cat'], 'weasel'] 
contains monkey and cat 

subtree ['monkey', 'cat'] contains monkey and cat 

In programming terms, what we have done here is found a list of all the 
sublists that contain the strings 'monkey' and 'cat'. In phylogenetic 
terms, we have found a list of of the clades that contain these two 
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organisms. Finding the smallest such clade is equivalent to identifying 
the last common ancestor of these two organisms, which we can do by 
writing another function which counts the number of leaf nodes in a 
subtree and using that function to sort1 our list of subtrees:

def count_leaves(subtree): 
    total = 0 
    for element in subtree: 
        if isinstance(element, list): 
            total  = total + count_leaves(element) 
        else: 
            total = total + 1 
    return total 

subtrees = find_subtrees(tree, 'monkey', 'cat') 
sorted_subtrees = sorted(subtrees, key=count_leaves) 
print(sorted_subtrees[0]) 

The first element of the sorted list of subtrees – the one with the fewest 
leaf nodes – is the smallest possible clade which contains our two taxa, 
and hence represents finding the last common ancestor of the two:

['monkey', 'cat']

Recap
This chapter has been all about ways of storing data: an introduction to 
two new data types and a discussion of complex data structures. 

The new data types are intended for fairly specific uses, and you can get 
away without using for most programs – we can use lists instead of tuples,
and dicts instead of sets – but having them in your toolbox leads to code 
that's more readable and robust. If you're used to programming with just 
lists and dicts, it might not be obvious when you encounter good 

1 This use of sorting is discussed in the chapter on functional programming.
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opportunities to use tuples and sets, so keep them at the back of your 
mind when writing code in future (hopefully the examples in the rest of 
this book will provide some inspiration). 

Complex data structures are conceptually quite simple, but thinking and 
reasoning about them takes a bit of getting used to. We've seen in this 
chapter examples of the most common and useful types of complex data 
structures, involving lists, dicts, sets and tuples in various combinations. 
The examples that we've discussed illustrate an important point in 
programming: that picking the right representation for your data can 
make a big difference in how difficult it is to process them. Experience, 
along with exposure to real life examples, will make it clear to you which 
data structures are suitable for tackling which types of problems. 
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Exercises

Distance matrix
One of the questions we might want to ask of our heavy metal gene 
response data from earlier in the chapter is: which types of 
contamination provoke similar responses in expression levels? To answer 
it, we need to come up with a way of measuring how similar the sets of 
over-expressed genes are for any two give conditions. A straightforward 
metric is to divide the number of genes shared between the two lists (the 
intersection) by the total number of genes in both lists (the union). Write a 
program that will start with a list of sets (use the heavy metal data as an 
example) and produce a pairwise similarity matrix stored in a dict of dicts 
– i.e. we should be able to get the similarity score for two conditions by 
writing something like:

score = similarity_matrix['arsenic']['cadmium']

Testing for monopyly
Write a function that uses a phylogenetic tree stored as nested lists and 
determines whether or not two taxa are more closely related to each other
than either is to a third taxon. Assume the tree is rooted. 

58



Chapter 3: Complex data structures

Solutions

Distance matrix
There are two parts to this problem: calculating the similarity scores and 
creating the dict to hold the results. It's quite easy to calculate the 
similarity score for a given pair of sets – the names of the methods we 
need to use (union and intersection) are helpfully mentioned in the 
problem description, so we just have to divide the number of elements in 
the intersection by the number of elements in the union1:

gene_sets = { 
        'arsenic' : {1,2,3,4,5,6,8,12}, 
        'cadmium' : {2,12,6,4}, 
        'copper' : {7,6,10,4,8}, 
        'mercury' : {3,2,4,5,1} 
} 
 
set1 = gene_sets['arsenic'] 
set2 = gene_sets['mercury'] 
similarity = len(set1.intersection(set2)) / len(set1.union(set2)) 
# similarity == 0.625

Iterating over all possible pairwise comparisons is likewise quite easy – 
we just use two nested for loops. Remember that each pair in the 
gene_sets dict consists of the name of a condition (the key) and a set 
of genes identifiers (the value) so the best way to do the iteration is using 
the items method. Here we print out all the similarity scores, using a 
condition to avoid comparing a set to itself:

1 Remembering, if we're using Python 2, to include from __future__ import division.
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for condition1, set1 in gene_sets.items(): 
   for condition2, set2 in gene_sets.items(): 
      if condition1 != condition2: 
         similarity = len(set1.intersection(set2)) / 
len(set1.union(set2))
         print(condition1, condition2, similarity) 

('mercury', 'copper', 0.1111111111111111) 
('mercury', 'arsenic', 0.625) 
('mercury', 'cadmium', 0.2857142857142857) 
('copper', 'mercury', 0.1111111111111111) 
('copper', 'arsenic', 0.3) 
...

Notice from the output that we are considering each pair in both 
direction (e.g. mercury vs. copper and copper vs. mercury). We could avoid
this, but it doesn't matter for the purpose of this exercise and it might be 
handy to be able to look up similarity scores in either direction, so we'll 
leave it. 

Next, we come to the problem of storing the results. It's tempting to think
that we can just create an empty dict before we start our loops and add 
elements at each iteration:

similarity_scores = {} 
 for condition1, set1 in gene_sets.items(): 
   for condition2, set2 in gene_sets.items(): 
      if condition1 != condition2: 
         similarity = len(set1.intersection(set2)) / 
len(set1.union(set2))
         similarity_scores[condition1][condition2] = similarity 

but this gives us a KeyError. The problem here is that the final line 
requires there to be a value associated with the key condition1 in the 
similarity_scores dict, but we have never created one. Some 
programming languages (notably Perl) will automatically create keys in a 
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dict in these situations1, but Python requires us to create the key 
ourselves. There are two approaches we can take – either we create a key 
for condition1 at the start of the outer loop, and set the value to an 
empty dict❶:

similarity_scores = {} 
for condition1, set1 in gene_sets.items(): 
   similarity_scores[condition1] = {} ❶
   for condition2, set2 in gene_sets.items(): 
      if condition1 != condition2: 
         similarity = len(set1.intersection(set2))/len(set1.union(set2))
         similarity_scores[condition1][condition2] = similarity 

or we create a temporary dict at the start of the outer loop to hold the 
scores for the current iteration❶, and assign it to condition1 at the end
of the outer loop after it's been populated with scores❷:

similarity_scores = {} 
for condition1, set1 in gene_sets.items(): 
   single_similarity = {} ❶
   for condition2, set2 in gene_sets.items(): 
      if condition1 != condition2: 
         similarity = len(set1.intersection(set2))/len(set1.union(set2))
         single_similarity[condition2] = similarity 
   similarity_scores[condition1] = single_similarity❷ 

distance_matrix.py

Either way will work, and both will result in the same complex data 
structure being stored in similarity_scores:

1 This feature is called autovivification.
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{'mercury': 
   {'copper': 0.1111111111111111, 
    'arsenic': 0.625, 
    'cadmium': 0.2857142857142857}, 
 'copper': 
   {'mercury': 0.1111111111111111, 
    'arsenic': 0.3, 
    'cadmium': 0.2857142857142857}, 
 'arsenic': 
   {'mercury': 0.625, 
    'copper': 0.3, 
    'cadmium': 0.5}, 
 'cadmium': 
   {'mercury': 0.2857142857142857, 
    'copper': 0.2857142857142857, 
    'arsenic': 0.5}
}

Given that this problem is all about transforming collections of data, we 
might wonder whether it's possible to express a solution in a functional 
programming style. The inner loop involves three elements: iterating over
items in a dict, processing the items using some transformation, and a 
condition to ensure that only certain items get processed. The natural fit 
for this kind of job is a dict comprehension1, and we can rewrite the inner 
loop to use one:

for condition1, set1 in gene_sets.items(): 
    single_scores = {
        condition2 : len(set1.intersection(set2))/len(set1.union(set2)) 
        for condition2,set2 in gene_sets.items() 
        if condition1 != condition2
        } 
    similarity_scores[condition1] = single_scores

In the above code, the dict comprehension has been split over multiple 
lines to make it easier to read, but it's a single Python statement. Whether
you consider the procedural version or the comprehension version easier 
to read is a matter of personal preference and background. 

1 See the chapter on comprehensions for a discussion of these. 
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We can even take things a step further and replace the outer for loop 
with another dict comprehension. Using two nested comprehensions in 
this way looks odd, but the key to reading it is to start with the innermost 
set of brackets. Using this approach we can transform our collection of 
gene sets into a collection of pairwise similarity scores in a single 
statement:

similarity_scores = {
    c1: {
        c2 : len(s1.intersection(s2)) / len(s1.union(s2)) 
        for c2,s2 in gene_sets.items() 
        if c1 != c2
        } 
    for c1,s1 in gene_sets.items()
} 

Testing for monophyly
This exercise sounds quite difficult, but a lot of the hard work has already 
been done in the form of the functions that we examined earlier in the 
chapter. Recall that we already have a function for testing whether a given
subtree contains a given taxon as one of its leaf nodes. A subtree supports
the hypothesis that two taxa are more closely related to each other than 
either is to a third if it contains the first two taxa, but not the third – 
which we can test by using our contains() function in a complex 
condition:

if (contains(subtree, taxon1) and
    contains(subtree, taxon2) and not
    contains(subtree, taxon3)):
      # subtree supports closely related taxon1 + taxon2

Testing to see if a tree supports this hypothesis is just a question of 
asking if any of its subtrees fit the criterion of containing taxon1 and 
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taxon2 but not taxon3. We can reuse most of the code for the function 
we saw earlier in the chapter to iterate over subtrees:

def are_closely_related(my_list, taxon1, taxon2, taxon3): 
    result = False 
    # does the current list match the condition?
    if (contains(my_list, taxon1) 
    and contains(my_list, taxon2) 
    and not contains(my_list, taxon3)): 
        result = True 
    # do any sublists match the condition?
    for sublist in my_list: 
        if isinstance(sublist, list): 
            if are_closely_related(sublist, taxon1, taxon2, taxon3): 
                result = True 
    return result

assert are_closely_related(tree, 'raccoon', 'dog', 'bear') == False 
assert are_closely_related(tree, 'raccoon', 'bear', 'weasel') == True 
assert are_closely_related(tree, 'raccoon', 'bear', 'dog') == True

monophyly.py

Instead of assembling a list of matching subtrees, here we're simply 
interested in a true-or-false answer, so we set the result to False 
initially, then change it to True if either the current nested list matches 
the condition or if any of the sublists match the condition. A few 
assertions test that the function works as expected.
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4: object oriented Python

Introduction
If you've worked your way through Python for Biologists1 you'll be vaguely 
aware that there are different "types" of things in Python – strings, 
numbers, files, regular expressions, etc. You may also have heard 
references to something called object oriented programming, which is 
often presented as a scary and esoteric technique that involves a lot of 
complicated-sounding concepts like inheritance, composition, and 
polymorphism. While it's true that there are many corners of the object 
oriented world which are daunting for the novice programmer, at its heart
object oriented programming is simply the practice of creating new 
types of things. 

In many ways, learning the tools of object oriented programming is much 
like learning to write functions. When we first learn to write small 
programs as complete beginners, we are content to use the built in 
functions and methods of Python as building blocks. Later, we learn to 
write our own functions, and find that this allows us to write larger and 
more complex programs more easily. It's the same with types: it's 
perfectly possible to write good and useful programs using only the types 
provided by the Python language, but learning how to create our own 
makes it much easier to solve a wide range of problems. 

Indeed, the advantages of writing our own classes and writing our own 
functions are very similar. When we write our own functions, the basic 
building blocks that we have to use are the built in Python functions and 
methods. Writing our own functions doesn't allow us to do anything that 
we couldn't do before, it just allows us to structure our code in a way 

1 Or pretty much any other introductory Python book
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that's much easier to read and write, and hence to write much larger and 
more sophisticated programs (think back to the concept of encapsulation).
Similarly, learning to create our own types of object doesn't allow us to do
anything fundamentally different – but it does let us structure code in a 
way that allows for much greater flexibility. 

Before we dive in, a few sentences about nomenclature. So far, in both 
Python for Biologists and in this book, we've tended to use the word type to
refer to the fact that values in Python come in different flavours, and the 
word thing to refer to a bit of data like a string or a file. For the purposes 
of this chapter, where our goal is to explicitly talk about objects, we are 
going to have to be a bit more precise. From now on, we will refer to an 
individual thing as an object, and the type of thing as its class. Instead of 
saying that a particular thing is of a particular type, we will say that a 
given object is an instance of a class. For example, in this line of code:

input = open("somedata.txt")

we will say that the input variable refers to an object that is an instance 
of the File class. 

One common pitfall when learning about objects is getting confused 
about the difference between objects and classes, so I'll spell it out 
explicitly here. A class is like a blueprint for building objects. Defining a 
class doesn't cause any objects to be created directly, it simply describes 
what an instance of that class will look like when we do create it. Once 
we've defined a class, we can create as many instances – i.e. as many 
objects that use that class as a blueprint – as we like.

Some of the nomenclature for talking about classes we already know – for 
example, we know from Python for Biologists that a piece of code which 
belongs to objects of a particular class is a method. 
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A simple DNA sequence class
One of the tricky things about learning object oriented programming is 
that much of the value of doing so lies in the ability to create classes that 
solve groups of related programming problems rather than a single, 
well-defined problem. This leads to a slightly less straightforward 
learning experience than, for example, learning how to use loops. When 
learning to use loops, it's quite easy to show a problem that can't be 
solved without them, then present the solution, and get a very satisfying 
"Eureka!" moment. With object oriented programming we often have to 
use our imagination a bit more in order to see why various techniques are
useful. 

As an introduction to object oriented thinking, we'll take a look at a small 
collection of useful functions and see how we can use them to build up a 
set of classes for working with biological sequences. 

Here are two useful functions for working with DNA sequences:

def get_AT(my_dna): 
    length = len(my_dna) 
    a_count = my_dna.count('A') 
    t_count = my_dna.count('T') 
    at_content = (a_count + t_count) / length 
    return at_content 
 
def complement(my_dna): 
    replacement1 = my_dna.replace('A', 't') 
    replacement2 = replacement1.replace('T', 'a') 
    replacement3 = replacement2.replace('C', 'g') 
    replacement4 = replacement3.replace('G', 'c') 
    return replacement4.upper() 

two_functions.py
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The get_AT() function returns the AT content of the my_dna argument,
and the complement() function returns the complement. Here's a very 
simple program that calls these two functions and prints out the results:

dna_sequence = "ACTGATCGTTACGTACGAGTCAT" 
print(get_AT(dna_sequence)) 
print(complement(dna_sequence)) 

The output shows that the functions work as intended:

0.5652173913043478 
TGACTAGCAATGCATGCTCAGTA 

What if we want to attach a bit of metadata to the sequence – for 
example, the name of the gene, and the species to which it belongs? We 
can easily create a couple of new variables when we're dealing with just 
one sequence:

dna_sequence = "ACTGATCGTTACGTACGAGTCAT" 
species = "Drosophila melanogaster"
gene_name = "ABC1"
print("Looking at the " + species " " + gene_name + " gene")
print("AT content is " + str(get_AT(dna_sequence))) 
print("complement is " + complement(dna_sequence)) 

two_functions.py

But this obviously will not scale. To store a large collection of sequences 
along with their gene names and species names requires a different 
approach. We could create two dictionaries – one to store sequences and 
gene names, and one to store sequences and species names. But what if 
we want to store two sequences that are the same, but belong to different 
species? The dictionary approach won't work, since keys have to be 
unique. And it seems unlikely that we're going to want to look up the gene
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name for a given sequence anyway – if anything, it's likely to be the other 
way round. 

What we need in order to solve this problem elegantly is a way of 
wrapping up all three bits of information – the sequence, gene name, and 
species name – into one big ball of data which can be treated as a unit. 
One way to do this is with a complex data structure – for example, a list of
dictionaries1, where each dictionary represents a single sequence record 
and has three items corresponding to the three bits of information we 
need to store. A much better way is to create a class that represents a 
DNA sequence, instances of which can be created and passed around in 
our programs as discrete objects. 

Defining a class is straightforward, but first we have to decide what 
instance variables and methods it will have. Instance variables are 
variables that belong to a particular object (we'll see how to use them 
soon). We already know what methods are – we've been using them on 
many of the built in Python classes. We want our class to have three 
instance variables (a DNA sequence, a gene name, and a species name) 
and two methods (the ones we saw previously: getAT() and 
complement()).  For this example, our three instance variables are 
going to be strings, but they could also be File objects, dicts, lists, etc. 

Here's a bit of code that defines our new class, creates an instance, and 
calls some methods on it:

1 Take a look at the chapter on complex data structures for some examples of this approach. 
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class DNARecord(object): 
    sequence = 'ACGTAGCTGACGATC'❶
    gene_name = 'ABC1'
    species_name = 'Drosophila melanogaster'
 
    def complement(self): ❷
        replacement1 = self.sequence.replace('A', 't') 
        replacement2 = replacement1.replace('T', 'a') 
        replacement3 = replacement2.replace('C', 'g') 
        replacement4 = replacement3.replace('G', 'c') 
        return replacement4.upper() 
 
    def get_AT(self): ❸
        length = len(self.sequence) 
        a_count = self.sequence.count('A') 
        t_count = self.sequence.count('T') 
        at_content = (a_count + t_count) / length 
        return at_content 

d = DNARecord() ❹
print('Created a record for ' + d.gene_name + ' from ' + d.species_name)
print('AT is ' + str(d.get_AT()))
print('complement is ' + d.complement())

dna_record.py

There's a lot going on in this code sample, so we'll go through it line by 
line. 

We start with the keyword class, followed by the name of our class with 
the name of the base class in parentheses (don't worry for now about the 
meaning of the base class, we will discuss it later). This line ends with a 
colon and, as we might expect, the rest of the class definition is indented. 

On the next few lines❶ we define some attributes of the class – a DNA 
sequence, a gene name and a species name. 

Next, we start defining our first method – the complement() method❷. 
The method definition works just like a function definition, except that it 
takes as its first argument a special variable called self1. This self 

1 Java programmers will be familiar with the concept as this.
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variable is how we refer to the object inside the method – so, to refer to 
the DNA sequence of the record, we use the variable name 
self.sequence. We don't have to worry about how the self variable 
gets created – Python automatically takes care of setting the value of the 
self variable whenever we make a method call on our object. We make 
use of the self variable again in the get_AT() method❸.

The next few lines of code are where we start to use our new class. We 
create a new instance of our DNARecord class by writing the name of the 
class followed by a pair of parentheses (we'll learn more about the reason 
for these shortly)❹. Once the new object has been created, and assigned 
to the variable d, we can access its attributes using the pattern 
variablename.attributename. So to get the gene name of the 
DNARecord referred to by the variable d, we simply write d.gene_name. 
To call a method on our new object, we use the same pattern.

Now we've seen what a class definition looks like, let's see what can be 
done to improve it. 

Constructors
An obvious limitation of the class as we've written it above is that the 
three members – sequence, gene_name and species_name – are set 
as part of the class definition. This means that every instance of this class 
we create will have the same values set for these variables, which is 
unlikely to be useful. Of course, once we've created an object we can 
change its member variables, so if we want two different DNA records 
with different properties then we can simply set them after the objects 
have been created:
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d1 = DNARecord() 
d1.sequence = 'ATATATTATTATATTATA' 
d1.gene_name = 'COX1' 
d1.species_name = 'Homo sapiens' 
 
d2 = DNARecord() 
d2.sequence = 'CGGCGGCGCGGCGCGGCG' 
d2.gene_name = 'ATP6' 
d2.species_name = 'Gorilla gorilla' 
 
for r in [d1, d2]: 

print('Created ' + r.gene_name + ' from ' + r.species_name) 
print('AT is ' + str(r.get_AT())) 
print('complement is ' + r.complement())

We're using the exact same class definition as above, but this time after 
creating each DNARecord object we set its properties, before using a loop
to iterate over the two records and print their information. We can see 
from the output how the updated values for the member variables are 
used when we ask for the AT content or for the complement:

Created COX1 from Homo sapiens 
AT is 1 
complement is TATATAATAATATAATAT 
Created ATP6 from Gorilla gorilla 
AT is 0 
complement is GCCGCCGCGCCGCGCCGC 

Note that when we update a member variable of an instance of an object, 
it only affect that particular instance – when we set the sequence for d1, 
it doesn't affect d2, or any other DNARecord objects that might be 
created. 

Looking at the above code, it's clear that we are often going to want to set 
all the variables of an object in one go. In the above code we do this in 
three separate statements, but we might be tempted to make life easier by

72



Chapter 4: object oriented Python

creating another method for our object whose job is to set its variables. 
Here's what it might look like:

class DNARecord(object): 
    sequence = 'ACGTAGCTGACGATC' 
    gene_name = 'ABC1' 
    species_name = 'Drosophila melanogaster' 
 
    def complement(self): 
        ...
 
    def get_AT(self): 
        ...
 
    def set_variables(self, new_seq, new_gene_name, new_species_name): ❶
        self.sequence = new_seq 
        self.gene_name = new_gene_name 
        self.species_name = new_species_name 
 
d1 = DNARecord() 
d1.set_variables('ATATATTATTATATTATA','COX1','Homo sapiens') ❷
 
d2 = DNARecord() 
d2.set_variables('CGGCGGCGCGGCGCGGCG','ATP6','Gorilla gorilla') ❷
 
for r in [d1, d2]: 

print('Created ' + r.gene_name + ' from ' + r.species_name) 
print('AT is ' + str(r.get_AT())) 
print('complement is ' + r.complement())

set_variables.py

The new method❶ follows the normal rule for object methods – the first 
argument is self – and sets the three variables using the remaining 
arguments. Later we can see how this method allows us to set all the 
variables in one statement❷. 

Now that we've made it so easy to set the variables, there's no need to 
have them as part of the class definition, so we can tidy up our class by 
removing them. Everything will still work fine as long as we remember to 
set the variables for an object after we create it:
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class DNARecord(object): 

    def complement(self): 
        ...
 
    def get_AT(self): 
        ...
 
    def set_variables(self, new_seq, new_gene_name, new_species_name): 
        self.sequence = new_seq 
        self.gene_name = new_gene_name 
        self.species_name = new_species_name 
 
d1 = DNARecord() 
d1.set_variables('ATATATTATTATATTATA','COX1','Homo sapiens') 
 
d2 = DNARecord() 
d2.set_variables('CGGCGGCGCGGCGCGGCG','ATP6','Gorilla gorilla') 
 
for r in [d1, d2]: 

print('Created ' + r.gene_name + ' from ' + r.species_name) 
print('AT is ' + str(r.get_AT())) 
print('complement is ' + r.complement())

However, this allows us to get into difficulties if we accidentally try to use 
a newly created object before its variables have been set:

d1 = DNARecord() 
print(d1.complement())

The above code will give us an error letting us know that Python can't find
the sequence in order to calculate the complement:

Traceback (most recent call last): 
    replacement1 = self.sequence.replace('A', 't') 
AttributeError: 'DNARecord' object has no attribute 'sequence' 
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To avoid running into this problem, Python1 has a special kind of method 
called a constructor. The job of a constructor is to create a new object and 
set its variables all in one statement, and it uses a bit of special syntax:

class DNARecord(object): 
 
     def __init__(self, sequence, gene_name, species_name):❶
         self.sequence = sequence
         self.gene_name = gene_name
         self.species_name = species_name
  
     def complement(self): 
         ...  
     def get_AT(self): 
         ...  

d1 = DNARecord('ATATATTATTATATTATA', 'COX1', 'Homo sapiens')❷
print(d1.complement())

constructor.py

The constructor method❶ has an unusual name – two underscores, 
followed by the word init, followed by another two underscores. This 
special name tells Python that this isn't just another ordinary method, 
but one that has a special job. Notice that when we create our 
DNARecord object❷ we simply pass in the values we want our new object
to have as arguments to DNARecord(). Python takes care of creating the 
object, running the __init__() method, and returning the newly 
created object all in one go. Now, if we try to create a DNARecord object 
without telling Python what we want its member variables to be:

d2 = DNARecord()

We will get an error right away:

1 And other object oriented languages.
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TypeError: __init__() takes exactly 4 arguments (1 given) 

It's worth pausing at this point and comparing the object oriented code 
we get when using the class definition above with the imperative style 
code we saw at the start of the chapter:

# imperative code
dna_sequence = "ACTGATCGTTACGTACGAGT" 
species = "Drosophila melanogaster"
gene_name = "ABC1"
print("Looking at the " + species + " " + gene_name + " gene")
print("AT content is " + get_AT(dna_sequence)) 
print("complement is " + complement(dna_sequence))

# object oriented code
d1 = DNARecord("ACTGATCGTTACGTACGAGT", "ABC1", "Drosophila 
melanogaster")
print("Looking at the " + d1.species_name + " " + d1.gene_name + " 
gene")
print("AT content is " + str(d1.get_AT())) 
print("complement is " + d1.complement())

Notice the difference in how the data are stored, and how they are 
processed. In the imperative code, we create three variables to hold the 
three bits of data, and then pass them to the functions to get the answers 
we want. In the object oriented style, we package up the three bits of data 
into one object, then ask the object for the answers we want. The object is
responsible for both storing its own variables, and calculating the AT and 
complement. In other words, when we want to know the AT content of a 
DNARecord object, we don't ask for the sequence and then pass it to a 
function, we simply ask for the AT content directly, and it's the object's 
job to tell us. 

Once we've defined a new class, it behaves just the same as a built in class 
– there's no difference in how we use a DNARecord object compared to a 
File object or a String object or an Integer object. We can store a 
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DNARecord object in a variable, list or dict; we can pass it as an 
argument to a function or method, and we can return it from a function 
or method. For example, here's a function that takes a DNARecord as an 
argument and returns the protein translation as a string1:

def translate_dna(dna_record): 
    gencode = { 

    'ATA':'I', 'ATC':'I', 'ATT':'I', 'ATG':'M', 
    'ACA':'T', 'ACC':'T', 'ACG':'T', 'ACT':'T', 
    'AAC':'N', 'AAT':'N', 'AAA':'K', 'AAG':'K', 
    'AGC':'S', 'AGT':'S', 'AGA':'R', 'AGG':'R', 
    'CTA':'L', 'CTC':'L', 'CTG':'L', 'CTT':'L', 
    'CCA':'P', 'CCC':'P', 'CCG':'P', 'CCT':'P', 
    'CAC':'H', 'CAT':'H', 'CAA':'Q', 'CAG':'Q', 
    'CGA':'R', 'CGC':'R', 'CGG':'R', 'CGT':'R', 
    'GTA':'V', 'GTC':'V', 'GTG':'V', 'GTT':'V', 
    'GCA':'A', 'GCC':'A', 'GCG':'A', 'GCT':'A', 
    'GAC':'D', 'GAT':'D', 'GAA':'E', 'GAG':'E', 
    'GGA':'G', 'GGC':'G', 'GGG':'G', 'GGT':'G', 
    'TCA':'S', 'TCC':'S', 'TCG':'S', 'TCT':'S', 
    'TTC':'F', 'TTT':'F', 'TTA':'L', 'TTG':'L', 
    'TAC':'Y', 'TAT':'Y', 'TAA':'_', 'TAG':'_', 
    'TGC':'C', 'TGT':'C', 'TGA':'_', 'TGG':'W'} 

    last_codon_start = len(dna_record.sequence) - 2 
    protein = "" 
    for start in range(0,last_codon_start,3): 
        codon = dna_record.sequence[start:start+3] 
        aa = gencode.get(codon.upper(), 'X') 
        protein = protein + aa 
    return protein

translate_record.py

Inheritance
What other useful methods could we add to our DNARecord class? How 
about a method which returns the record in FASTA format. We'll combine 
the gene_name and species_name member variables to construct the 

1 See the dictionaries chapter in Python for Biologists for a reminder of how this function works.
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header, replacing any spaces in the species name with underscores1,  add 
a greater-than symbol at the start, and separate the header and sequence 
with a newline character2:

class DNARecord(object): 
 
    def __init__(self, sequence, gene_name, species_name): 
        ...
    def complement(self): 
        ... 
    def get_AT(self): 
        ...

    def get_fasta(self): 
        safe_species_name = self.species_name.replace(' ','_')
        header = '>' + self.gene_name + '_' + safe_species_name
        return header + '\n' + self.sequence + '\n' 

fasta_method.py

A quick check will allow us to make sure that the method's working as 
expected:

d1 = DNARecord('ATATATTATTATATTATA', 'COX1', 'Homo sapiens')
print(d1.get_fasta())

>COX1_Homo_sapiens 
ATATATTATTATATTATA 

We now have a DNARecord object that can do three useful things – 
calculate its AT content, calculate its complement, and generate a FASTA 
format string.  We can write programs to carry out simple bioinformatics 
tasks using this object. For example, if we have a list of DNARecord 

1 Some sequence analysis tools are fussy about not allowing spaces in FASTA headers.
2 We also add another newline character at the end so that we can create a multi-sequence 

FASTA file simply by writing the result of several get_fasta() method calls consecutively.
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objects, we can generate a FASTA file containing just the sequences with a
high AT content:

output = open("high_at.fasta", "w")
for d in my_dna_records:
    if d.get_AT() > 0.6:
        output.write(d.get_fasta())

Now that we've seen how useful objects can be, we might want to create a 
similar class to represent a protein record – let's call it ProteinRecord 
for consistency. Just like the DNARecord class, it will have a gene_name, 
a species_name, and a sequence. What methods should our 
ProteinRecord class have? Obviously it doesn't make any sense to ask 
for the complement of a protein sequence, or to ask for its AT content. 
Instead, we'll give it a method that calculates the proportion of the amino
acid residues that are hydrophobic1. We'll also include the method that 
generates the FASTA sequence – since DNA and protein FASTA formats 
look the same, we can just reuse our get_fasta() method.  

Here's a first attempt at the code for our ProteinRecord class:

1 Take a look at the exercise in the chapter of Python for Biologists on writing our own functions 
for a discussion of how this method works. 
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class ProteinRecord(object): 
 
    def __init__(self, sequence, gene_name, species_name): 
        self.sequence = sequence 
        self.gene_name = gene_name 
        self.species_name = species_name 
 
    def get_fasta(self): 
        safe_species_name = self.species_name.replace(' ','_') 
        header = '>' + self.gene_name + '_' + safe_species_name 
        return header + '\n' + self.sequence + '\n' 
 
    def get_hydrophobic(self): 
        aa_list=['A','I','L','M','F','W','Y','V'] 
        protein_length = len(self.sequence) 
        total = 0 
        for aa in aa_list: 
            aa = aa.upper() 
            aa_count = self.sequence.count(aa) 
            total = total + aa_count 
        percentage = total * 100 / protein_length 
        return percentage

protein_record.py

There's nothing going on here that's particularly different to what we had 
in our DNARecord class. We still have a constructor that handles the job 
of setting the instance variables and the same get_fasta() method 
that handles the job of creating a FASTA format string. We also have the 
new get_hydrophobic() method whose job is to calculate the 
percentage of hydrophobic residues in the sequence. Here's a few lines of 
code showing how everything works:

d1 = ProteinRecord('MSRSLLLRFLLFLLLLPPLP', 'COX1', 'Homo sapiens') 
print(d1.get_fasta()) 
print(str(d1.get_hydrophobic()))

And here's the output:
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>COX1_Homo_sapiens 
MSRSLLLRFLLFLLLLPPLP 
 
65 

Everything seems to be working perfectly. The only thing that feels 
slightly unsatisfactory is that we have the exact same get_fasta() code
duplicated in both the DNARecord and ProteinRecord class 
definitions. This feels wrong; we know from previous experience that code
reuse is a Good Thing, and that having the exact same code defined in two
places is a Bad Thing. We could get round this by moving the 
get_fasta() code to a method outside the class definitions and have it 
called by the classes, but that would break the encapsulation – the objects
would no longer be responsible for generating their own FASTA sequence.

The key to resolving this problem is to take advantage of an object 
oriented feature called inheritance. Inheritance allows two different 
classes – in our case, DNARecord and ProteinRecord – to share code. 
The way it works is quite straightforward: we create a third class to hold 
the shared code, and then tell Python that the two classes should inherit 
methods from it. This third class is called the superclass (or base class) of 
the other two, and the other two are called subclasses (or derived classes) 
of the third one. We'll call our third class SequenceRecord, and it will 
hold the methods (__init__() and get_fasta()) that are common to 
both DNARecord and ProteinRecord:
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class SequenceRecord(object): 
 
    def __init__(self, sequence, gene_name, species_name): 
        self.sequence = sequence 
        self.gene_name = gene_name 
        self.species_name = species_name 
 
    def get_fasta(self): 
        safe_species_name = self.species_name.replace(' ','_') 
        header = '>' + self.gene_name + '_' + safe_species_name 
        return header + '\n' + self.sequence + '\n' 

inheritance.py

So far, so familiar: SequenceRecord is just another class definition. But 
here's where it gets interesting – we'll rewrite the class definitions of 
DNARecord and ProteinRecord so that they inherit from this class. To 
do this, we just change the content of the parentheses after DNARecord 
in the class definition to SequenceRecord, and include only the 
methods that we want to belong just to our DNARecord class – 
complement() and get_AT():

class DNARecord(SequenceRecord): 
 
    def complement(self): 
        ...

    def get_AT(self): 
        ...

inheritance.py

Likewise, for the ProteinRecord class definition we supply the name of 
the superclass – SequenceRecord – and the definition of the 
get_hydrophobic() function:
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class ProteinRecord(SequenceRecord): 
    

def get_hydrophobic(self): 
...

inheritance.py

Let's look at where this leaves us. We have one base class – 
SequenceRecord – which holds the methods (the __init__() 
constructor and get_fasta()) which are common to both sequence 
types. Then we have two subclasses – DNARecord and ProteinRecord 
– that inherit these methods, and add their own. Let's look at the object 
oriented code in full:
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class SequenceRecord(object): 
 
    def __init__(self, sequence, gene_name, species_name): 
        self.sequence = sequence 
        self.gene_name = gene_name 
        self.species_name = species_name 
 
    def get_fasta(self): 
        safe_species_name = self.species_name.replace(' ','_') 
        header = '>' + self.gene_name + '_' + safe_species_name 
        return header + '\n' + self.sequence + '\n' 
 
class ProteinRecord(SequenceRecord): 
    

def get_hydrophobic(self): 
aa_list=['A','I','L','M','F','W','Y','V'] 
protein_length = len(self.sequence) 
total = 0 
for aa in aa_list: 
    aa = aa.upper() 
    aa_count = self.sequence.count(aa) 
    total = total + aa_count 
return total * 100 / protein_length  

 
class DNARecord(SequenceRecord): 
 
    def complement(self): 
        replacement1 = self.sequence.replace('A', 't') 
        replacement2 = replacement1.replace('T', 'a') 
        replacement3 = replacement2.replace('C', 'g') 
        replacement4 = replacement3.replace('G', 'c') 
        return replacement4.upper() 
 
    def get_AT(self): 
        length = len(self.sequence) 
        a_count = self.sequence.count('A') 
        t_count = self.sequence.count('T') 
        return (a_count + t_count) / length 

inheritance.py

The benefit of structuring things in this way is that all our methods are 
only defined once, but can be used by all the appropriate classes, allowing
us to easily mix and match different sequence types in a script:
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p1 = ProteinRecord('MSRSLLLRFLLFLLLLPPLP', 'COX1', 'Homo sapiens') 
print(p1.get_fasta()) 
print(p1.get_hydrophobic()) 
 
d1 = DNARecord('ATCGCGTACGTGATCGTAG', 'COX1', 'Homo sapiens') 
print(d1.get_fasta()) 
print(d1.complement()) 

Notice how in this example, we only ever create instances of the 
subclasses – DNARecord and ProteinRecord. We never create an 
instance of SequenceRecord directly1. By way of illustration, here's a 
modified version of our translation function that takes a DNARecord as 
its argument and returns a ProteinRecord:

1 Although there is nothing to stop us doing so. 
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def translate_dna(dna_record): 
    gencode = { 

    'ATA':'I', 'ATC':'I', 'ATT':'I', 'ATG':'M', 
    'ACA':'T', 'ACC':'T', 'ACG':'T', 'ACT':'T', 
    'AAC':'N', 'AAT':'N', 'AAA':'K', 'AAG':'K', 
    'AGC':'S', 'AGT':'S', 'AGA':'R', 'AGG':'R', 
    'CTA':'L', 'CTC':'L', 'CTG':'L', 'CTT':'L', 
    'CCA':'P', 'CCC':'P', 'CCG':'P', 'CCT':'P', 
    'CAC':'H', 'CAT':'H', 'CAA':'Q', 'CAG':'Q', 
    'CGA':'R', 'CGC':'R', 'CGG':'R', 'CGT':'R', 
    'GTA':'V', 'GTC':'V', 'GTG':'V', 'GTT':'V', 
    'GCA':'A', 'GCC':'A', 'GCG':'A', 'GCT':'A', 
    'GAC':'D', 'GAT':'D', 'GAA':'E', 'GAG':'E', 
    'GGA':'G', 'GGC':'G', 'GGG':'G', 'GGT':'G', 
    'TCA':'S', 'TCC':'S', 'TCG':'S', 'TCT':'S', 
    'TTC':'F', 'TTT':'F', 'TTA':'L', 'TTG':'L', 
    'TAC':'Y', 'TAT':'Y', 'TAA':'_', 'TAG':'_', 
    'TGC':'C', 'TGT':'C', 'TGA':'_', 'TGG':'W'} 

    last_codon_start = len(dna_record.sequence) - 2 
    protein = "" 
    for start in range(0,last_codon_start,3): 
        codon = dna_record.sequence[start:start+3] 
        aa = gencode.get(codon.upper(), 'X') 
        protein = protein + aa 
    
    # gather the information to create the protein record
    protein_name = dna_record.gene_name
    protein_species = dna_record.species_name

    # create the protein record and return it
    protein_record = ProteinRecord(protein,protein_name,protein_species)

    return protein_record

Overriding
Occasionally we'll want a subclass to behave in a slightly different way to 
its superclass – the mechanism that allows us to do this is called 
overriding. Suppose that we want our DNARecord objects to have a 
genetic_code variable, which stores the number of the genetic code for
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the sequence using the NCBI numbering scheme1. We cannot simply add 
this variable to the constructor for the SequenceRecord class, as it 
doesn't make sense to have a genetic code for a protein sequence. Instead,
what we need to do is supply the DNARecord class with its very own, 
specialized constructor, which will take a genetic code as one of its 
arguments.  That way, when we create a new DNARecord object the 
__init__() method defined in DNARecord will be used, but when we 
call get_fasta() on the object, it will still use the method defined in 
SequenceRecord. Let's look at the code:

class DNARecord(SequenceRecord): 
 
    def __init__(self, sequence, gene_name, species_name, genetic_code):

        self.sequence = sequence 
        self.gene_name = gene_name 
        self.species_name = species_name 
        self.genetic_code = genetic_code 
 
    def complement(self): 
        ...
 
    def get_AT(self): 
        ...

overriding.py

We can now create DNARecord objects using four initial variables – a 
gene name, a species name, a sequence, and a genetic code:

d1 = DNARecord('ATCGCGTACGTGATCGTAG', 'COX1', 'Homo sapiens', 5) 
print(d1.get_fasta()) 
print(d1.complement()) 
print('genetic code is ' + str(d1.genetic_code))

1 http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi
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The definition of the __init__() method in DNARecord is said to 
override the one in SequenceRecord. Of course, it's not just constructors
that can be overridden in this way – we can do the same for any method. 

Calling methods in the superclass
The above example is straightforward, because we wanted to entirely 
replace the superclass method with a new one. What if instead, we 
wanted to add a bit of functionality? For example, imagine that we decide 
to add a bit of error-checking to   the SequenceRecord constructor. We 
would like to make sure that the species name provided in the constructor
arguments really does look like a species name. It should have two parts 
separated by a space, and the first part should start with a capital letter. 
We can write a regular expression to describe this pattern1, and then if the
given species name doesn't match it, exit the program with an error 
message2. Here's the code:

import re 
 
class SequenceRecord(object): 
 
    def __init__(self, sequence, gene_name, species_name): 
     if not re.match(r'[A-Z][a-z]+ [a-z]+', species_name): 

    exit(species_name + ' is not a valid species name!')  
        self.sequence = sequence 
        self.gene_name = gene_name 
        self.species_name = species_name 
 
    def get_fasta(self): 
        ...

This works fine, but we run into a problem – we would like this 
functionality to be shared by all subclasses of SequenceRecord (i.e. 

1 See the regular expressions chapter in Python for Biologists if you need a refresher.
2 There is a much better way to handle this type of situation, which we will learn about in the 

chapter on exceptions.
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both DNARecord and ProteinRecord). However, recall that we just 
added a specialized constructor for DNARecord in order to allow it to 
have a genetic code. When we create a new instance of DNARecord, it is 
the specialized constructor that runs, not the one in SequenceRecord, 
so DNARecord can't take advantage of this useful species name checking 
functionality. 

What we would really like to be able to do is to call the SequenceRecord
constructor from inside the DNARecord constructor, and only then add 
on the extra genetic_code variable. Fortunately, Python has a built in 
mechanism to allow this – we can call the SequenceRecord constructor 
directly by calling SequenceRecord.__init__().  Here's how it works 
in practice:

class DNARecord(SequenceRecord): 
 
   def __init__(self, sequence, gene_name, species_name, genetic_code): 
     # first call the SequenceRecord constructor to check the species 
name
     SequenceRecord.__init__(self, sequence, gene_name, species_name) 
     # now set the genetic code 
     self.genetic_code = genetic_code 
 
    def complement(self): 
     ... 
 
    def get_AT(self): 
     ...

calling_superclass.py

Now we have the best of both worlds. Our DNARecord class is able to take
advantage of the improvements to the SequenceRecord constructor, 
and still implement its own specialized behaviour. 
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Polymorphism
Polymorphism is a complicated name for a simple concept: code that does
different things depending on the type of data on which it's operating. 
Here's a somewhat contrived example: imagine that we want to add a 
method to our sequence objects that will return the length of the protein 
sequence that they represent. Obviously we are going to need a different 
method for DNA and protein sequences – for protein sequences, we just 
need to return the length of the sequence variable, but for DNA 
sequences we need to return the length of the sequence variable divided
by three. Because we need different methods for each type of sequence, 
we can't add the method to the SequenceRecord class definition, but 
must instead add it separately to both the DNARecord and 
ProteinRecord class definitions:

class ProteinRecord(SequenceRecord): 
    

def get_protein_length(self): 
return len(self.sequence) 

   ...
 
class DNARecord(SequenceRecord): 
 
    def get_protein_length(self): 
        return len(self.sequence) / 3

    ...

Now suppose that we have a list of sequence records that are a mixture of 
DNA and protein sequences, and we want to do something to just the 
ones whose protein length is greater than one hundred amino acid 
residues. Rather than having to examine each record and check whether it
is a DNARecord or a ProteinRecord, we can simply call the 
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get_protein_length method on each, and Python will take care of 
making sure that the correct method is called:

for my_record in list_of_records:
    if my_record.get_protein_length() > 100:
        # do something with the record

We've actually encountered this type of behaviour before. Recall that we 
can iterate over an file, string or list using exactly the same syntax – this 
is an example of polymorphism.

Recap
object oriented programming is a big topic, and whole libraries of books 
have been written about its ramifications. In this chapter we've seen a 
brief overview of the ways that basic object oriented features work in 
Python. We've looked at how we can use simple class definitions to 
package data and code together in logical units which we can create and 
pass around in our programs. We've also seen how we can allow our 
classes to share functionality using inheritance, and how we can give them
specialized behaviour by overriding methods in their base class. Finally, 
we've looked at one important benefit of object oriented thinking – the 
ability of functions to handle different types of data transparently. 

Because object oriented programming is such a complex topic, there are 
many aspects worth reading up on that are beyond the scope of this book. 
Composition is an alternative to inheritance which also allows classes to 
share functionality, but in a different way. Unlike many languages, Python
allows for multiple inheritance, an easily abused technique that allows 
classes to inherit from multiple parents. Much thought has been given to 
solving common abstract problems in an object oriented style and the 
result is design patterns – a set of best practise techniques that are 
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applicable to many different languages and problems1. Finally, there are a 
few aspects of object oriented programming – interfaces and abstract 
classes – which don't really exist in Python but which are worth learning 
about.  

1 Though design patterns tend to be used less often in Python than in other languages as its 
dynamic nature makes many of them unnecessary. 
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Exercise
Write an object oriented program that simulates evolution at three loci in 
a population of one hundred haploid individuals1. Each locus has two 
alleles which differ slightly in fitness and the overall fitness for an 
individual can be calculated from the fitness of its three loci using a 
multiplicative model (i.e. if the fitness scores for the alleles of a given 
individual are 1, 0.9 and 0.8 then the individual's fitness is 1 * 0.9 * 0.8 = 
0.72). 

In every generation, the simulation proceeds in two stages. Firstly, to 
represent selection, each individual is potentially killed with a probability
inversely proportional to the fitness – in other words, for each individual, 
pick a random number between 0 and 1 and if that number is greater than
the individual's fitness, it dies and is removed from the population. 
Secondly, to represent reproduction, new individuals are added to the 
population to make the numbers back up to one hundred. Rather than 
simulating recombination etc. we will simply say that the alleles for each 
new individual are chosen by randomly selecting alleles from the current 
population – in other words, the chances of selecting a given allele is 
proportional to its frequency in the population as a whole.

At each generation, your program should calculate the frequency of all 
alleles and write them to a text file. At the end of the simulation, we'll be 
able to plot the frequencies on a chart to show the how they change over 
time. 

1 Readers with a background in population genetics will, I hope, forgive the many shortcomings 
of this simulation!
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Solution
This is a big exercise with a lot of parts, and there are many different ways
to structure it. The solution we'll look at here is just one way; you may 
come up with something completely different. 

The goal of this exercise is to write a program that combines object 
oriented and procedural code. We will start by tackling the object oriented
part and defining some classes. We'll use three different classes – one to 
represent an individual, one to represent a locus, and one to represent an 
allele. Let's begin with the simplest class, the one that represents a single 
allele. It has a name, and a fitness score:

class Allele(object): 
    def __init__(self, name, fitness): 
        self.name = name 
        self.fitness = fitness 

A locus object is really only a way of grouping related alleles together, so 
all it needs is a name and a way of adding alleles. We could supply the list 
of alleles as part of the constructor, but just to make things easier to read 
we'll have the constructor create an empty list to hold the alleles, and 
write a method which allows us to add alleles one at a time:

class Locus(object): 
    def __init__(self, name): 
        self.name = name 
        self.alleles = [] 
 
    def add_allele(self, allele): 
        self.alleles.append(allele)

Finally, we need a class to represent an individual. An individual will have
its list of alleles set when it's created, so we'll make the constructor take a 
list of alleles as its argument:
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class Individual(object): 
 
    def __init__(self, alleles): 
        self.alleles = alleles

Having defined our classes, we can start experimenting with them. Let's 
start off with something simple – here's how we define a locus (which 
we'll imaginatively call locus one) with two alleles. As is customary, we'll 
use a capital letter A as the name for the most-fit allele (with a fitness of 
1), and a lower-case a as the name for the less-fit allele (with a fitness 
slightly less than 1):

allele_A = Allele('A', 1) 
allele_a = Allele('a', 0.94) 
locus1 = Locus('locus one') 
locus1.add_allele(allele_A) 
locus1.add_allele(allele_a)

The first thing that we notice about this bit of code is that the variable 
names of the two alleles don't really serve any purpose – we create the 
Allele objects and then immediately add them to the Locus object. We 
can simplify the code a bit by calling the constructor for the alleles and 
then passing the returned value immediately to the add_allele() 
method all in one statement:

locus1 = Locus('locus one') 
locus1.add_allele(Allele('A', 1)) 
locus1.add_allele(Allele('a', 0.94))

This has the exact same effect but is a little easier to read. Let's go ahead 
and create the other two loci in the same way, which we'll use for the rest 
of the exercise. We'll also create a list to hold all three Locus objects:
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locus1 = Locus('locus one') 
locus1.add_allele(Allele('A', 1)) 
locus1.add_allele(Allele('a', 0.94)) 
 
locus2 = Locus('locus two') 
locus2.add_allele(Allele('B', 1)) 
locus2.add_allele(Allele('b', 0.76)) 
 
locus3 = Locus('locus three') 
locus3.add_allele(Allele('C', 1)) 
locus3.add_allele(Allele('c', 0.81))

all_loci = [locus1, locus2, locus3]

Now we have our loci and alleles, we can create some individuals. Our 
Individual constructor requires that we pass in a list of alleles as the 
argument, so we need some way to get hold of the allele objects. 
Remember that we can't refer to the allele objects using their variable 
names, because we created them in such a way that they don't have 
variable names! Here's one way to do it – we could just grab the first 
element of the alleles list from each locus:

first_allele = locus1.alleles[0] 
second_allele = locus2.alleles[0] 
third_allele = locus3.alleles[0] 
ind = Individual([first_allele, second_allele, third_allele]) 

or alternatively, using the list of loci:

alleles_for_individual = [] 
for locus in all_loci: 
    alleles_for_individual.append(locus.alleles[0]) 
ind = Individual(alleles_for_individual) 

This works fine, but if give all our one hundred individuals exactly the 
same set of alleles, then our simulation is going to be a bit boring! What 
we really need is a way of randomly picking an allele for each locus. A 
useful tool for this is the random.choice() method, which takes a list 
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of items as its argument and return a randomly selected element from 
that list. To use this method, we'll have to remember to import the 
random module. 

This is where we start to see the difference between the procedural and 
object oriented way of thinking. We could easily write a function that 
takes a Locus as its argument and returns a random allele:

def get_random_allele(my_locus): 
    return random.choice(my_locus.alleles) 

But a more object oriented way of doing it is to add a method to the 
Locus class which returns a random allele:

class Locus(object): 
    def __init__(self, name): 
        ...
 
    def add_allele(self, allele): 
        ...
 
    def get_random_allele(self): 
        return random.choice(self.alleles)

Notice the difference between the two approaches: in the first approach, 
we get the information (the list of alleles) from the locus and then process
it (pick a random allele) whereas in the second, we let the object use the 
information that it has (its list of alleles) to generate the answer for us. 
The distinction is subtle, but important. 

Now we have a way of randomly picking alleles, we can write a function 
that creates and returns Individuals with randomly-picked alleles, 
given a set of loci:
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def create_individual(loci): 
    alleles_for_individual = [] 
    for locus in loci: 
        alleles_for_individual.append(locus.get_random_allele()) 
    i = Individual(alleles_for_individual) 
    return i

We can now create a starting population of any size we like just by calling 
this function inside a loop:

def create_population(size, loci): 
    all_individuals = [] 
    for i in range(size): 
        all_individuals.append(create_individual(loci)) 
    return all_individuals
my_population = create_population(100, all_loci)

Now we have a list containing one hundred Individual objects. Before 
we start tackling the selection/reproduction part of the simulation, it 
would be good to figure out a way to examine this population. We can 
think about examining the population in two different ways – we can ask 
questions about each Individual on its own, but we can also ask 
questions about the population as a whole.

Let's start by examining each individual on its own. For example, we 
might want to print the genotype (Abc, aBc, ABc, etc.) of each individual. 
Again, we're faced with the choice of whether to do this in a procedural or 
object oriented way. The procedural approach would be to write a 
function that takes an Individual object as its argument, and 
concatenates the name of each allele to generate the genotype:

def get_genotype_for_individual(ind): 
    result = '' 
    for allele in ind.alleles: 
        result = result + allele.name 
    return result
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but the more object oriented approach is to add a get_genotype() 
method to the Individual class definition:

class Individual(object): 
 
    def __init__(self, alleles): 
        ...
 
    def get_genotype(self): 
        result = '' 
        for a in self.alleles: 
            result = result + a.name 
        return result

We can use this method to, for instance, print out the genotypes of each 
individual in the population in quite a natural way:

for ind in my_population: 
    print(ind.get_genotype())

The output shows that this works just as we expect:

ABC 
abC 
aBc 
aBC 
AbC 
abc 
ABc 
AbC 
...etc...

Another obvious thing to do is to look at the fitness of each individual in 
the population. Again, there's a procedural and an object oriented way to 
do it – we'll implement the object oriented solution, which is to add a 
get_fitness() method to the Individual class definition:
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class Individual(object): 
 
    def __init__(self, alleles): 
        ...
 
    def get_genotype(self): 
        ...
    
    def get_fitness(self): 
        final_fitness = 1 
        for a in self.alleles: 
            final_fitness = final_fitness * a.fitness 
        return final_fitness 

An individual can calculate its own fitness simply by multiplying up the 
fitnesses of each of its alleles. We can now look at both the genotype and 
fitness score for each individual:

for ind in my_population: 
    print(ind.get_genotype(), ind.get_fitness())

The output looks good – we can see that, as expected, individuals with 
more capital letters in their genotype tend to have higher fitness than 
those with more lower case letters: 

('Abc', 0.6156) 
('aBc', 0.7614) 
('ABC', 1) 
('AbC', 0.76) 
('aBc', 0.7614) 
('aBC', 0.94) 
('abc', 0.578664) 
...

Now we've seen how to look at the data for individuals, let's tackle the 
problem of summarizing the population as a whole, starting with 
something easy – calculating the frequency of a given allele in the 
population. We simply iterate over the list of all individuals and ask, for 
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each individual, whether the given allele is in that individual's list of 
alleles:

def get_allele_frequency(population, allele): 
    allele_count = 0 
    for individual in population: 
        if allele in individual.alleles: 
            allele_count += 1 
    return allele_count / len(population)

To use this function we first have to get a reference to one of our alleles. 
Remember that we don't have variables that point to the alleles, but we 
do have variables that point to the loci, so we can just grab the first allele 
in a loci's list of alleles and calculate its frequency:

# get the first allele for locus one 
one_allele = locus1.alleles[0] 
print(get_allele_frequency(my_population, one_allele))

The next logical step is to summarize a population by calculating the 
frequencies of all alleles. We can write a function that iterates over our 
list of loci and their alleles and prints the name and frequency of each 
one:

def summarize_population_alleles(population, loci): 
    for locus in loci: 
        for allele in locus.alleles: 
            print(allele.name, get_allele_frequency(population, allele))

summarize_population_alleles(my_population, all_loci)

Th output shows pretty much what we'd expect – in the initial population,
all alleles are hovering at a frequency of around 0.5, with some variation 
to due chance:
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('A', 0.53) 
('a', 0.47) 
('B', 0.48) 
('b', 0.52) 
('C', 0.45) 
('c', 0.55)

Now that we have a way to calculate the fitness of an individual, and a 
way to look at the allele frequencies in the population as a whole, we can 
make a start on the simulation aspect. Think about what has to happen in
each generation: we need to look at each individual and figure out 
whether they die and get removed from the population. To figure out 
whether an individual dies, we just generate a random number between 0 
and 1 (which we can do using the random.random() function) and if 
that number is greater than the individual's fitness, it gets removed from 
the population. Here's a bit of code that implements that idea:

def single_generation(population): 
    for individual in population: 
        if random.random() > individual.get_fitness(): 
            population.remove(individual)

To test it out, we'll run the single_generation() function ten times 
on our initial population, printing the population size after each call. 
We'll print out the allele frequency summary at the start and end of the 
simulation so we can see what's happening. Here's the simulation code:

summarize_population_alleles(my_population, all_loci) 

for i in range(10): 
    print('at generation ' + str(i)) 
    print('population size is ' + str(len(my_population))) 
    single_generation(my_population) 

summarize_population_alleles(my_population, all_loci)

simulation1.py
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And the output shows what is happening. As the simulation progresses, 
the population size decreases (since we are removing individuals, but 
never adding them) and the frequency of the less fit alleles (the lower 
case ones) decreases while the frequency of the upper case ones 
increases1:

1 Remember that the make up of the starting population and the removal of individuals are 
both partly controlled by random numbers, so if you try running this code you'll get different 
results. 
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('A', 0.49) 
('a', 0.51) 
('B', 0.47) 
('b', 0.53) 
('C', 0.58) 
('c', 0.42) 
at generation 0 
population size is 100 
at generation 1 
population size is 77 
at generation 2 
population size is 64 
at generation 3 
population size is 50 
at generation 4 
population size is 40 
at generation 5 
population size is 36 
at generation 6 
population size is 30 
at generation 7 
population size is 28 
at generation 8 
population size is 25 
at generation 9 
population size is 23 
('A', 0.6086956521739131) 
('a', 0.391304347826087) 
('B', 0.8695652173913043) 
('b', 0.13043478260869565) 
('C', 0.9565217391304348) 
('c', 0.043478260869565216) 

Now all we need is to fill in the last bit of the simulation – adding new 
individuals to the population. As specified in the exercise description, we 
create a new individual by picking alleles randomly from the current 
population. There are a few different ways to do this, but the simplest one
is probably to make a list, for each locus, of all the current alleles in the 
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population belonging to that locus, then pick a random element from that
list:

def individual_from_population(population, loci): 
    individual_alleles = [] 
    for locus in loci: 
        # pick an allele from the population for this locus 
        all_alleles = [] 
        for individual in population: 
            for allele in individual.alleles: 
                if allele in locus.alleles: 
                    all_alleles.append(allele) 

        # now all_alleles contains all the alleles in the population 
        # for this locus,  pick a random one 
        this_allele = random.choice(all_alleles) 
        individual_alleles.append(this_allele) 

    # now individual_alleles contains all the alleles 
    # for our new individual, one allele for each locus 
    return Individual(individual_alleles)

All we have to do to complete our single_generation() function is to
add enough new individuals to the population to make it back up to 100:

def single_generation(pop): 
    for individual in pop: 
        if random.random() > individual.get_fitness(): 
            pop.remove(individual) 
    for i in range(100 - len(population)): 
        pop.append(individual_from_population(population, all_loci)) 

simulation2.py

If we re-run our ten-generation simulation code from earlier, we can see 
that now the allele frequencies change, but the population size doesn't:
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('A', 0.49) 
('a', 0.51) 
('B', 0.47) 
('b', 0.53) 
('C', 0.57) 
('c', 0.43) 
at generation 0 
population size is 100 
...
at generation 9 
population size is 100 
('A', 0.62) 
('a', 0.38) 
('B', 0.87) 
('b', 0.13) 
('C', 0.92) 
('c', 0.08) 

Having a snapshot of the allele frequencies at the start and end of the 
simulation is useful for testing, but it doesn't make for a very interesting 
result – what we would really like to be able to is look at the change in 
allele frequencies as the simulation progresses. To do that we'll have to 
switch from printing the frequency information on screen to writing it to 
a file. The simplest way to do this is just to write a line containing six 
comma-separated fields – one per allele – to a file after each generation. 
To make sense of the result, we'll need an extra bit of code to write a 
header line which will let us keep track of which field corresponds to 
which allele. Here's a function that will print a header line to an output 
file:

def summarize_alleles_header(loci, output_file): 
    for locus in loci: 
        for allele in locus.alleles: 
            alleles_output.write(allele.name + ' , ') 
    alleles_output.write('\n') 
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And here's a modified version of our earlier function that writes a single 
line summarizing the allele frequencies at a given moment:

def summarize_alleles(population, loci, output_file): 
    for locus in loci: 
        for allele in locus.alleles: 
            freq = get_allele_frequency(population, allele) 
            output_file.write(str(freq) + ', ') 
    output_file.write('\n')

Now the main body of our simulation looks like this:

# create alleles and loci 
locus1 = Locus('locus one') 
locus1.add_allele(Allele('A', 1)) 
locus1.add_allele(Allele('a', 0.94)) 
locus2 = Locus('locus two') 
locus2.add_allele(Allele('B', 1)) 
locus2.add_allele(Allele('b', 0.76)) 
locus3 = Locus('locus three') 
locus3.add_allele(Allele('C', 1)) 
locus3.add_allele(Allele('c', 0.81)) 
all_loci = [locus1, locus2, locus3] 
 
# create a population of 100 individuals 
my_population = create_population(100, all_loci) 
 
# open the alleles frequency output file and write the header line 
alleles_output = open('alleles.csv', 'w') 
summarize_alleles_header( all_loci, alleles_output) 
 
# for each generation... 
for i in range(10): 
    # ...write a line of output to the file... 
    summarize_alleles(my_population, all_loci, alleles_output) 
    # ...then simulate death and reproduction 
    single_generation(my_population) 
 
# close the output file 
alleles_output.close()

simulation2.py
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And here's what the output file alleles.csv looks like – the first line tells us 
the order of the allele frequencies and subsequent lines each represent a 
single generation1:

A , a , B , b , C , c , 
0.54, 0.46, 0.41, 0.59, 0.4, 0.6, 
0.52, 0.48, 0.49, 0.51, 0.46, 0.54, 
0.6, 0.4, 0.59, 0.41, 0.48, 0.52, 
0.62, 0.38, 0.67, 0.33, 0.46, 0.54, 
0.64, 0.36, 0.73, 0.27, 0.47, 0.53, 
0.65, 0.35, 0.83, 0.17, 0.47, 0.53, 
0.66, 0.34, 0.83, 0.17, 0.53, 0.47, 
0.7, 0.3, 0.81, 0.19, 0.58, 0.42, 
0.72, 0.28, 0.88, 0.12, 0.62, 0.38, 
0.74, 0.26, 0.92, 0.08, 0.66, 0.34, 

We can trivially increase the number of generations in the simulation by 
changing the number in the range() function call. To visualize the 
results of our simulation, we can import the alleles.csv file into a 
spreadsheet package and draw some charts. Here's a chart showing allele 
frequencies over one hundred simulated generations:

1 Ignore the trailing comma at the end of each line – we could remove it, but it would require 
more code and most spreadsheet programs will not care about it. 
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I've added the relative fitness for each allele (as set in the simulation code
above) to the legend so we can see how the less-fit alleles with the lowest 
fitness (b and c) disappear from the population relatively early on, 
whereas the less-fit allele which has fairly high relative fitness (a) takes 
much longer to disappear (and even, due to chance, is more frequent than
it's fitter partner A for a time). 
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5: Functional Python

Introduction
If you spend any time at all reading programming websites or blogs, then 
you can hardly have avoided discussions of functional programming. 
Although it's a very old idea, it's a hot topic right now1 and much progress 
has been made recently in making it accessible to novice programmers. 
Functional programming is a tricky thing to define, however, and there 
are a few different ways to think about it. We'll start this chapter with a 
quick tour of important functional programming concepts. 

State and mutability
One of the simplest ways to explain functional programming is to say 
that it's an approach to programming that tries as far as possible to avoid 
the use of state. By state, we simply mean variables that change during 
the execution of the program. Here's an example of a program with state –
this program adds up the integers from zero to nine:

x = 0
for i in range(10):
    x = x + i
print(x)

We can tell that this program has state, because the value stored in the 
variable x changes as the program runs2. When the program starts, the 
value of x is 0. After the first iteration of the loop, the value of x is 1. After
the second iteration, it's 3, and so on.  Here's a program that does the 
same thing, without using state:

1 For reasons that we'll go into later. 
2 Another way of saying this is to say that the variable x is mutable. 
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x = sum(range(10))
print(x)

It works by using the built in sum() function, which takes as its argument
a list1 and returns the sum of all elements. Notice how, in this piece of 
code, the value of the variable x is set once, and then never changed (we'll
see later in this chapter why this might be a desirable thing). From this 
perspective, functional programming appears to be the opposite of object 
oriented programming2. In object oriented programming, we create 
objects that have various attributes that describe their state (e.g. DNA 
sequences that have names and genetic codes) and we are mostly 
concerned with manipulating that state. 

Side effects
Another way to think about functional programming is that it's a style of 
programming that avoids writing functions with side effects. A function is
said to have side effects if, when you run it, it changes the state of the 
variables in the program. Here's an example of a function with side 
effects:

def my_function(i): 
    i.extend(['a', 'b', 'c']) 
    return(i) 

This function takes a single argument, which is a list, and adds three 
more elements on to the end using the list extend() method before 
returning the extended list. The side effect, in this case, is that it changes 
the value of the list that's given as the argument. We can see this happen 
if we print the value of the list before and after running the function:

1 In fact, the argument can be anything that behaves like a list i.e. any iterable type. 
2 If you haven't looked at the chapter on object oriented programming, now would be a good 

time to do so. 
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x = [1,2,3] 
print(x) 
print(my_function(x)) 
print(x) 

[1, 2, 3] 
[1, 2, 3, 'a', 'b', 'c'] 
[1, 2, 3, 'a', 'b', 'c'] 

After the function has run, the variable x contains three additional 
elements. Here's an example of a similar function that gives the same 
return value, but without the side effect – this function doesn't alter the 
value of the variable that's passed in as the argument:

def my_function(i): 
    return(i + ['a', 'b', 'c']) 

Why are side effects considered bad? The easiest answer is to pose the 
following question: imagine we have a variable x and we pass it as the 
argument to some function:

x = [1,4,9]
some_function(x)
// what is the value of x now?

If the function has side effects, then we have no way of knowing what the 
value of x is after the function call without going and looking at the code. 
Even worse, what we look inside the definition of some_function() 
and we find that it calls a bunch of other functions:

def some_function(input):
some_other_function(input)
another_function(input)
yet_another_function(input)
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Now we have to go and look at the definitions of those functions in order 
to figure out whether they will change the value of x, and so on. 

If, however, we know that some_function() doesn't have any side 
effects, then we can be confident that the value of x will not be changed 
by the function call, which makes it easier to reason about the behaviour 
of our program. 

A closely related idea is the concept that a function should always return 
the same value if given the same input. If a function references variables 
other than its arguments, then it breaks this rule. For example, here's a 
function that takes as its argument a list, and appends the contents of the
variable to_add:

def my_function(i): 
    return(i + to_add) 

It breaks the rule because the behaviour of the function changes 
depending on the value of to_add at the time that it's called. For 
example:

to_add =['a', 'b', 'c'] 
x = [1,2,3] 
print(my_function(x)) 
to_add =['x', 'y', 'z'] 
print(my_function(x)) 

The two calls to my_function in the above code have exactly the same 
argument, but they return different results:

[1, 2, 3, 'a', 'b', 'c'] 
[1, 2, 3, 'x', 'y', 'z'] 

And of course, if we forget to define to_add, or it is not a list, then the 
function will generate an error. 
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Functions that satisfy the two criteria we have discussed above – they 
always return the same value when called with the same arguments, and 
they don't have any side effects – are called pure functions. For the reasons
outlined above, it's generally much easier to reason about the behaviour 
of pure functions than functions that aren't pure.

Functions as objects
Yet another way of thinking about functional programming is the idea 
that functions are objects that can be passed around programs like any 
other type of object – they can be stored in variables, passed to other 
functions as arguments, and returned from other functions as return 
values. Python makes it quite easy to do this. By way of an example, here's
a function that takes two arguments – a list and the name of a function – 
and prints out the result of running the function on each element of the 
list:

def print_list_with_function(my_list, my_function): 
    for element in my_list: 
        print(my_function(element)) 

list_function.py

This looks odd if you've not encountered it before, but the syntax should 
be familiar. The function iterates over the list, and for each element runs 
my_function() with the element as the input and passes the return 
value straight to the print() function. A function that takes another 
function as one of its arguments, as in the example above, is known as a
higher order function. 

Let's see what happens when we use it. Here, we create a list and pass it to
our print_list_with_function() function, along with the name of 
the built in Python function len(), which returns the length of a string:
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input = ['abc', 'defhij', 'kl'] 
print_list_with_function(input, len) 

As expected, the output contains the lengths of the three elements of our 
input list:

3 
6 
2 

Here's where it gets interesting though; we're not restricted to using built 
in functions as the second argument to 
print_list_with_function(). We can supply any function we like 
as long as it takes a single string argument, including functions that we 
define. For example, here's a function that returns the second character of
its argument:

def get_second(input): 
    return input[1] 

We can pass the name of this function (get_second()) as the last 
argument to print_list_with_function():

print_list_with_function(input, get_second)

And as expected, the output contains the second character of each 
element in our input list:

b 
e 
l 

The get_second() function is a very short one – all it does is return a 
single expression. There's a special syntax for functions like these, called 
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a lambda expression. It's like a compact version of a function definition, 
expect that the body of the function must be a single statement which is 
returned. Here's what the get_second() function looks like if we write 
it as a lambda expression:

get_second = lambda(input) : input[1] 

You'll notice that it looks a bit different to a normal function definition. 
Rather than writing the name of the function followed by a list of its 
arguments in parentheses, instead we write the word lambda followed by 
the list of arguments. Also, we don't have to explicitly write the word 
return before the value that we want to return. Finally, it's all written on 
one line, and we store the result in a variable. 

Once we've written our lambda expression and assigned the result to a 
variable, we can use it just like a normal function:

get_second = lambda(input) : input[1] 
print_list_with_function(input, get_second) 

We can also skip assigning the result of a lambda expression to a variable 
and use it directly. Here's the same code but with the result of the lambda 
expression passed directly to print_list_with_function():

print_list_with_function(input, lambda(input) : input[1] ) 

A lambda expression that's used in this way is known as an anonymous 
expression1, because it doesn't have a name. For very short functions, this 
alternative syntax is useful because it allows us to express code in a very 
concise way. 

1 Other programming languages have support for anonymous functions, which work the same 
way.
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What is to be calculated
The final way I want to suggest thinking about functional programming is
that it places the emphasis on specifying what the answer looks like, 
rather than how to calculate it. Consider these two bits of code that add 
up the first ten integers and print out the result:

# procedural code 
total = 0 
for i in range(11): 
    total = total + i 
print(total) 
 
# functional code 
print(sum(range(11))) 

In the first bit of code, we are giving the steps required to calculate the 
answer. If we were to translate this code into natural English, we might 
write:

Create a variable to hold a running total, and set it to zero. Then, for 
each number between zero and ten, add that number to the total. Finally, 
print the total.

By contrast, in the second bit of code, we are simply describing the result:

The result is the sum of the numbers between zero and ten.

and we are prepared to let the computer worry about how to actually 
calculate the answer. This idea is very similar to the different between 
iterative and recursive approaches to programming – take a look at the 
chapter on recursion if you haven't already done so. 

The remainder of this chapter is divided into two main parts. In the first 
part, we will look at some built in higher order functions that allow us to 
carry out common programming tasks by using the techniques outlined 
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above. In the second part, we'll see how we can use these same techniques
in our own functions. 

As you work through the rest of this chapter, bear in mind that, unlike in 
some other languages, functional programming in Python is not an all-or-
nothing affair. It's not really feasible to write entire programs in a 
functional style1, so when you use functional programming features in 
your programs they will generally be mixed in with procedural code. 

built in higher order functions
There are many common programming tasks that can be made easier 
using higher order functions, and Python has very sensibly implemented 
several of them as built in functions. In this section we'll look at three 
higher order functions for working with iterable objects. 

map
Consider the very common situation where you have a list of data, and 
you want to create a new list by carrying out some operation on each 
element of the old list. For example, you have a list of DNA sequences, 
and you want to create a list of their lengths. It's quite straightforward to 
do this with a for loop – we create en empty list to hold the result, then 
iterate over the input list adding a single element to the result on each 
iteration:

dna_list = ['TAGC', 'ACGTATGC', 'ATG', 'ACGGCTAG'] 
lengths = [] 
for dna in dna_list: 
    lengths.append(len(dna)) 
# lengths is now [4,8,3,8] 

1 For one thing, a ban on side effects means that a purely functional program could never 
produce any output, since printing to the screen or to a file is a side effect!
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Here's a similar example – this time, we want to generate a list of the AT 
content of each sequence1:

dna_list = ['TAGC', 'ACGTATGC', 'ATG', 'ACGGCTAG'] 
at_contents = [] 
for dna in dna_list: 
    at_contents.append((dna.count('A') + dna.count('T')) / len(dna)) 

map.py

These two examples share a lot of code between them. They both follow a 
general pattern – we start off by creating an empty list to hold the result, 
then we iterate over the list of DNA sequences, and for each sequence 
calculate some value and append it to the result list. The name for this 
general pattern, where we want to apply some function to each element 
of a list to generate a new list, is a map2, and it's implemented in Python 
as a function called, unsurprisingly, map(). 

To use the Python map() function, we have to supply a function that will 
take as its argument a single element of the input list and return the 
corresponding element in the output list (we'll call this the 
transformation function). For our first example – turning a list of DNA 
sequences into a list of their lengths – the built in len() function will do 
the job. For the second example – turning a list of DNA sequences into a 
list of their AT contents – we can write a simple function that returns the 
AT content of its argument:

from __future__ import division 
def get_at(dna): 
    return (dna.count('A') + dna.count('T')) / len(dna) 

1 Remember to include from __future__ import division if you want to run this code 
in Python 2.

2 So-called because there's a one-to-one mapping between elements in the original list and the 
new list. 
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Now we simply have to call the map() function with the name of our 
transformation function as the first argument, and name of the original 
list as the second argument:

dna_list = ['TAGC', 'ACGTATGC', 'ATG', 'ACGGCTAG'] 
lengths = map(len, dna_list) 
at_contents = map(get_at, dna_list) 

map.py

The map() function takes care of setting up the empty results list, 
iterating over the original list, and running the transformation function 
on each element. The benefit of processing lists in this way is not simply 
that it involves less typing: rather, it's another way of achieving 
encapsulation. We have separated the bit of the code responsible for 
handling the iteration (the map() function) from the bit of code 
responsible for transforming a single element (the get_at() function). 

Because the transformation functions that we pass to map() are often 
very short, it's quite common to use lambda expressions to do the job 
instead. Here's our AT content example written as a lambda expression. 
It's formatted over a few lines to make it easier to read:

at_contents = map( 
    lambda dna : (dna.count('A') + dna.count('T')) / len(dna), 
    dna_list 
)

One final note about map(): its behaviour is subtly different in Python 2 
and 3. In Python 2, the result of running a map() function is a 
straightforward list, but in Python 3, the result is a map object, which we 
can iterate over. This means that we can treat the returned value in pretty
much the same way – this type of code will work fine in all versions of 
Python:
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dna_list = ['TAGC', 'ACGTATGC', 'ATG', 'ACGGCTAG'] 
at_contents = map(get_at, dna_list) 
for at in at_contents:

# do something with the AT content

but the way it works internally is slightly different. In Python 2, all 
elements of the resulting list are generated as soon as the map() 
function is called, but in Python 3, the elements are generated one-by-
one as they are needed, a type of behaviour referred to as lazy.  We can see
the effects of this difference if we use map() to create a very large list. 
For example, here's a bit of code that first uses range() to create a list of 
the first hundred thousand integers, then uses map() to create a list of 
the first hundred thousand powers of two (i.e. the transformation 
function takes each element and calculates two to that power):

l = list(range(100000))
m = map(lambda x : 2 ** x, l)

Under Python 2, this statement will take a very long time to execute – 
around 30 seconds on my desktop computer1. However, under Python 3, 
the exact same statement executes in no time at all, because it doesn't 
start to actually calculate the elements until they are needed – for 
example, when we start to iterate over the map object:

l = list(range(100000))
m = map(lambda x : 2 ** x, l)
for i in m:

print(i)

1 See the section on performance in Effective Python development for Biologists for a detailed 
explanation of how to measure execution time. 
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0 
1 
4 
9 
16 
25 
36 
49 
64 
81 
...

Notice how this behaviour can catch us out if we try to use map() with a 
function that depends on side effects. Here's a bit of code where we define
a transformation function that has the side-effect of appending the string
'a' to a list, x. We then call map() on a list of ten elements and print the
value of x:

x = [] 
def square(input): 
    x.append('a') 
    return input ** 2 
 
m = map(square, [0,1,2,3,4,5,6,7,8,9]) 
print(x) 

Under Python 2, our square() function is run once for each element of 
our list when we call the map() function, so when we print x it contains 
ten elements:

['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'a'] 

But under Python 3, the square() function never runs, because we never
access the elements of m, so the output shows us that even after the 
map() statement has completed, x is still an empty list:
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[] 

This ability of Python 3 to carry out so-called lazy evaluation, which saves 
time and memory, is a nice illustration of the power of functional 
programming to simplify the process of reasoning about computation. 

filter
A closely-related pattern to map is filter, used where we have a list from 
which we want to select only the elements that satisfy some condition. 
Imagine we have a list of DNA sequences, and we want to create a new list
containing only the sequences longer than five bases. The iterative 
solution is quite straightforward:

dna_list = ['TAGC', 'ACGTATGC', 'ATG', 'ACGGCTAG'] 
long_dna = [] 
for dna in dna_list: 
    if len(dna) > 5: 
        long_dna.append(dna) 

filter.py

But if we look at another example – creating a new list that contains only 
the sequences whose AT content is less than 0.6 – we can see how 
repetitive this kind of code is:

from __future__ import division 
dna_list = ['TAGC', 'ACGTATGC', 'ATG', 'ACGGCTAG'] 
 
at_poor_dna = [] 
for dna in dna_list: 
    print(dna, get_at(dna)) 
    if (dna.count('A') + dna.count('T')) / len(dna) < 0.6: 
        at_poor_dna.append(dna) 
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Just as with map, Python has a built in function for doing this kind of 
filtering, and it works in a similar way. We supply the Python's filter 
function with the name of a function that takes a single element as its 
argument and returns True or False to indicate whether or not that 
element should be included in the result list. Here's how we use it to 
select only DNA sequences longer than five bases1:

dna_list = ['TAGC', 'ACGTATGC', 'ATG', 'ACGGCTAG'] 
 
def is_long(dna): 
    return len(dna) > 5 
 
long_dna = filter(is_long, dna_list) 

filter.py

And here's how we use it to select only DNA sequence whose AT content 
is less than 0.6:

from __future__ import division 
dna_list = ['TAGC', 'ACGTATGC', 'ATG', 'ACGGCTAG'] 
 
def is_at_poor(dna): 
    at = (dna.count('A') + dna.count('T')) / len(dna) 
    return at < 0.6 
 
at_poor_dna = filter(is_at_poor, dna_list) 

Just as with map(), filter() behaves differently under Python 2 and 3, 
returning a list and a filter object respectively. So just as with map(), 
it's important not to rely on any side effects in the function that we pass 
to filter(). 

1 Both of the examples here could be re-written as lambda expressions.
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sorted
You've probably already encountered the sorted() function and used it 
for sorting lists in alphabetical or numerical order. The sorted() 
function is actually capable of sorting elements using any type of custom 
ordering, and it does so by acting as a higher order function. Sorting is a 
little bit more complicated to understand than mapping or filtering: the 
sorting algorithm used by Python is quite complicated so, unlike map() 
and filter(), we can't show a simple imperative version of the code. 
Nevertheless, the same principle of encapsulation applies: just as with 
map() (where we we supply a function that tells Python how to transform
a single input element and Python takes care of producing the output list)
and filter() (where we supply a function that tells Python whether to 
include a single input element and Python takes care of producing the 
filtered list), with sorted() we supply a function that tells Python what 
property of each input element we want to sort on, and Python takes care
of producing the sorted list. 

A few examples will make this clearer. Let's start by sorting our list of 
DNA sequences using the default order (i.e. without supplying a custom 
function):

dna_list = ['TAGC', 'ACGTATGC', 'ATG', 'ACGGCTAG'] 
sorted_dna = sorted(dna_list) 
print(sorted_dna) 
print(dna_list)

sorted.py

As the output makes clear, this gives us an alphabetical sorting of the 
elements in the list:

['ACGGCTAG', 'ACGTATGC', 'ATG', 'TAGC'] 
['TAGC', 'ACGTATGC', 'ATG', 'ACGGCTAG'] 
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It's very important to note that, as we can see from the second line of 
output, the original list is unchanged. There is another way of sorting a 
list – we can call the sort() method on the list – but we're going to avoid
using that method in this section for two reason. First, using sorted() 
to create a sorted copy of the list is more compatible with the functional 
programming ideas of avoiding state and mutability. Second, the 
sorted() method is more flexible as it's not restricted to lists – we can 
call sorted on any iterable data type (strings, files, etc).

Now let's look at sorting in a different order – for example, by length. To 
do this, we supply sorted() with a key function. The key function must 
take a single argument, and return the value that we want to sort on. By 
convention, we supply the key function as a keyword argument like this:

sorted(some_list, key=my_key_function)

For sorting by length, we can use the built in len() function as our key 
function. The len() function takes a single argument, and returns a 
single value, so it satisfies the requirements for a key function and we can
use it like this:

dna_list = ['TAGC', 'ACGTATGC', 'ATG', 'ACGGCTAG'] 
sorted_dna = sorted(dna_list, key=len) 
print(sorted_dna) 

sorted.py

This gives us our DNA sequences sorted from shortest to longest:

['ATG', 'TAGC', 'ACGTATGC', 'ACGGCTAG']

If we want them in the reverse order then we can simply pass a reverse 
keyword argument to the sorted function:
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sorted_dna = sorted(dna_list, key=len, reverse=True)

Let's look at something a bit more complicated that requires a custom key
function: sorting by AT content. We already have a function that takes a 
single DNA sequence and returns the AT content from our map() 
example above, so we can just reuse it for sorted():

from __future__ import division 
def get_at(dna): 
    return (dna.count('A') + dna.count('T')) / len(dna) 
 
dna_list = ['TAGC', 'ACGTATGC', 'ATG', 'ACGGCTAG'] 
sorted_dna = sorted(dna_list, key=get_at) 
print(sorted_dna) 

As the output shows, we get the DNA sequences sorted from lowest AT 
content to highest:

['ACGGCTAG', 'TAGC', 'ACGTATGC', 'ATG']

Here's another example – imagine that we want to sort a set of DNA 
sequences by the length of their poly-A tail. We need a function takes a 
DNA sequence as its argument, and return the number of A bases at the 
end of the sequence. One way to write such a function is using a regular 
expression. In the function below we check for the existence of a poly-A 
pattern at the end of the input sequence, and return either the length of 
the match (if one is found) or zero (if there is no match):

import re 
def poly_a_length(dna): 
    poly_a_match = re.search(r'A+$', dna) 
    if poly_a_match: 
        return len(poly_a_match.group()) 
    else: 
        return 0 
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Having written this function, we can use it as the key argument in a 
sorted() function call to sort a list of DNA sequences by the length of 
their poly-A tails:

dna_list = ['ATCGA', 'ACGG', 'CGTAAA', 'ATCGAA'] 
print(sorted(dna_list, key=poly_a_length)) 

['ACGG', 'ATCGA', 'ATCGAA', 'CGTAAA']

All of the above examples involve sorting strings, but we can use sorted to
sort any type of data. Imagine we have a list of tuples, each of which 
contains the name of a gene, and an expression level measurement under 
two different conditions:

measurements = [ 
    ('gene1', 121, 98), 
    ('gene2', 56,  32), 
    ('gene3', 1036, 1966), 
    ('gene4', 543, 522) 
] 

sort_tuples.py

Our aim is to identify genes which are over-expressed in the second 
condition relative to the first: in other words, we want to sort the tuples 
by the ratio of the two measurements.  Our key function, therefore, must 
take a single tuple as its argument, and return the result of dividing the 
third element by the second1 to get the ratio:

from __future__ import division 
def get_ratio(measurement): 
    return measurement[2] / measurement[1] 

1 Remember that these will be at index 2 and 1 respectively. 
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Since we are interested in the genes for which the ratio is highest, we 
should probably pass the reverse=True parameter to sorted(), so 
that the genes with the highest ratio (i.e. the most over-expression in 
condition two) appear at the top of the list:

print(sorted(measurements, key=get_ratio, reverse=True))

[('gene3', 1036, 1966), ('gene4', 543, 522), ('gene1', 121, 98), 
('gene2', 56, 32)]

The sorting algorithm used by Python1 is stable, meaning that elements 
which are equal (more accurately: which are equal after being run 
through the key function) are kept in the same order. This is a very useful 
property, as it allows us to carry out complex sorts by combining a 
number of simple sorts. Imagine we have a list of tuples representing loci,
each of which has a chromosome number, a base number, and a locus 
name:

loci = [ 
    (4, 9200, 'gene1'), 
    (6, 63788, 'gene2'), 
    (4, 7633, 'gene3'), 
    (2, 8766, 'gene4') 
] 

sort_chromosomes.py

We want to sort the loci by chromosome number and then, within each 
chromosome, by base position. We start off by defining functions which 
will return, for a given locus, either the chromosome number or the base 
(simply by returning the first or second element of the tuple):

1 Timsort, if you're interested: http://en.wikipedia.org/wiki/Timsort
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def get_chromosome(locus): 
    return locus[0] 
 
def get_base_position(locus): 
    return locus[1] 

We now carry out two sorts – first by base, then by chromosome:

sorted_by_base = sorted(loci, key=get_base_position) 
final_sort = sorted(sorted_by_base, key=get_chromosome) 
print(final_sort) 

to get the result we want:

[(2, 8766, 'gene4'), (4, 7633, 'gene3'), (4, 9200, 'gene1'), (6, 
63788, 'gene2')] 

reduce
The final higher order function that we'll look at is reduce() – probably 
the least commonly-used of Python's built in higher order functions. Just 
like the other higher order functions we've looked at, reduce() takes 
two arguments – a function, and a list. It then starts using the function to 
reduce the list to a single value (hence its name). First it calls the function
with the first two elements of the list as arguments and stores the result. 
Then it repeatedly calls the function using the result of the last call and 
the next element in the list as arguments, repeating this until it runs out 
of elements in the list, at which point the result is returned. We can see 
from this description of reduce() that it differs from the other higher 
order functions in two important ways: the function that we pass in as 
the first argument must take two arguments and return a single value, 
and the overall result of calling reduce() will be a single value rather 
than a list. 
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An example will make it clearer: say we wanted to find the product of a 
list of numbers. We can write a function that takes two arguments and 
multiplies them together:

def multiply(x,y): 
    return x * y 

We can then take this function and pass it to reduce() along with our 
list of numbers:

numbers = [2,6,3,8,5,4] 
print(reduce(multiply, numbers))

reduce.py

and follow what happens. First, reduce() will call multiply() using 
the first two elements of the list – 2 and 6 – as arguments and get the 
result 12. It will then call multiply() using the third element of the list 
(3) and the result of the last call (12) as arguments and get the result 36. 
It will then call multiply() using the fourth element of the list (8) and 
the result of the last call (36) as arguments, and so on, until all elements 
have been multiplied and it returns the final answer, 5760. 

Real life examples of situations where reduce is useful are hard to come 
by, but we have already encountered an example in this book. Recall that 
in the chapter on recursion, our solution to the last common ancestor 
exercise involved the same strategy as reduce(). To find the last 
common ancestor of a list of nodes in a tree given a function that can find
the last common ancestor of any two nodes, we first found the last 
common ancestor of the first two nodes, then found the last common 
ancestor of that result and the third node, and so on. We can concisely 
express this strategy using reduce():
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def find_lca_of_two(node1, node2):
    ...

def find_lca_of_list(node_list):
    return(reduce(find_lca_of_two, node_list))

Writing higher order functions
We'll round up this chapter with a look at how we can take advantage of 
the functional features of Python to write our own higher order functions.
Opportunities to employ functional features can be hard to spot when 
you're not used to them, so let's start by asking the following question: 
when would we benefit from writing a higher order function? Just like a 
normal function, a higher order function lets us abstract part of the 
behaviour of a bit of code to make it more flexible. Here's an example: 
imagine we're writing a program that, at some point, needs to generate a 
list of overlapping 4mers for a DNA sequence, so we write a function that 
looks like this:

def get_4mers(dna):
4mers = [] 
for i in range(len(dna) - 3): 

    4mers.append(dna[i:i+4]) 
return 4mers

Later, we're working on another program that needs to generate a list of 
overlapping 6mers, so we write another bit of code:

def get_6mers(dna):
6mers = [] 
for i in range(len(dna) - 5): 

    6mers.append(dna[i:i+6]) 
return 6mers
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It's very obvious, looking at the two functions, that they are doing the 
same thing with one small difference: the length of the kmers that they 
are generating. So we abstract that part of the function's behaviour by 
turning it into an argument:

def get_kmers(dna, k):
kmers = [] 
for i in range(len(dna) - k +1): 

    kmers.append(dna[i:i+k]) 
return kmers

By turning that particular aspect of the function's behaviour – the kmer 
size – into an argument, we have created a more flexible function that can
generate kmers of any length. 

Now let's imagine that we want a function that returns not the kmers 
themselves, but the AT content of the kmers (perhaps we are using the 
kmers to survey the variation in AT content along a chromosome using a 
sliding window approach). We can take our get_kmers() function and 
modify it accordingly:

from __future__ import division 
def get_kmers_at(dna, k): 
    result = [] 
    for i in range(len(dna) - k +1): 
        kmer = dna[i:i+k] 
        at = (kmer.count('A') + kmer.count('T')) / k 
        result.append(at) 
    return result 

Next, we want a function that returns the number of CG dinucleotides in 
each kmer (perhaps we are looking for regions of a chromosome subject 
to CpG methylation). We can do this with yet another modification of 
get_kmers():
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def get_kmers_cg(dna, k): 
    result = [] 
    for i in range(len(dna) - k +1): 
        kmer = dna[i:i+k] 
        cg = kmer.count('CG') 
        result.append(cg) 
    return result 

Now we find ourselves in the same situation as before – we have two very 
similar functions, and we want to combine them to make a single, flexible 
function. But what is it that needs to be abstracted in this case? In other 
words, what is it that differs between the two functions? It's not a simple 
variable, but rather the process that is applied to each kmer to 
generate a single element of the result list. So to make our flexible, 
generic function, we take this process – let's call it the analyze kmer 
function – and turn it into an argument:

def get_kmers_f(dna, k, analyze_kmer): 
    result = [] 
    for i in range(len(dna) - k +1): 
        kmer = dna[i:i+k] 
        result.append(analyze_kmer(kmer)) 
    return result 

analyze_kmers.py

The above version of the function takes three arguments – the DNA 
sequence, the kmer length, and the name of the function which analyses a
kmer – and returns a list containing the result of running the 
analyze_kmer() function on each kmer generated from the input 
sequence. Just like with map(), filter() and sorted(), the 
analyze_kmer() function has to follow a specific set of rules. It must 
take as its argument a DNA string, and it must return a single value. Our 
get_at() function from earlier in the chapter follows these rules, 
therefore we can pass it as the third argument to  get_kmers_f(). In 
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fact, doing so reproduces the functionality of the get_kmers_at() 
function we looked at earlier:

dna = 'ATCGATCATCGGCATCGATCGGTATCAGTACGTAC'
at_scores = get_kmers_f(dna, 8, get_at)

And we can reproduce the functionality of get_kmers_cg() using 
either another function or simply a lambda expression:

dna = 'ATCGATCATCGGCATCGATCGGTATCAGTACGTAC'
cg_counts = get_kmers_f(dna, 8, lambda dna : dna.count('CG'))

What have we actually achieved by structuring our code in this way? It all 
comes back to the idea of encapsulation: separating out code that does 
different jobs. Rather than having a function that does two jobs as in the 
case of get_kmers_at() (generating kmers and calculating AT scores), 
we now have one function whose job is to generate kmers, and a separate 
function whose job is to calculate AT scores. We can use these single-
purpose functions as building blocks to easily make more complex pieces 
of code. In fact, what we have really built here in the form of the 
get_kmers_f function is a specialized kind of map function – one 
designed to work on DNA sequences.

There's one other aspect to higher order functions that you're less likely 
to encounter: we can write a function that returns another function – a 
kind of function factory. Here's an example: imagine we want to write a 
function that will take a DNA sequence as its argument, identify cut sites 
for the EcoRI restriction enzyme (which cuts at the pattern GAATTC), and
return a list of the DNA fragments that would be produced by an EcoRI 
digest of the input sequence. The function is quite easy to write using 
Python's regular expression module1 – we just have to be careful to add an

1 We don't actually need a regular expression, as the EcoRI cut site motif has no variation, but 
the re.finditer function is a useful way to iterate over pattern matches. 
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offset of one to the match position to allow for the fact that EcoRI cuts 
after the first base, and not forget to include the final fragment in the 
return list:

def ecori_digest(dna): 
    current_position = 0 
    result = [] 
    for m in re.finditer('GAATTC', dna): 
        result.append(dna[current_position:m.start() + 1]) 
        current_position = m.start() + 1 
    result.append(dna[current_position:]) 
    return result 

Next, we realize that this function would be more useful if it could 
generate fragments for any given restriction enzyme motif (with the 
accompanying offset). Normally, we'd do this by modifying the digest 
function to take a pattern and offset as additional arguments1, but here's 
a different approach – we can instead write a function that takes a pattern
and offset as arguments, and returns a new function that will carry out 
the digest:

def make_digester(pattern, offset): 

    def digester(dna): 
        current_position = 0 
        result = [] 
        for m in re.finditer(pattern, dna): 
            result.append(dna[current_position:m.start() + offset]) 
            current_position = m.start() + offset 
        result.append(dna[current_position:]) 
        return result 

    return digester ❶
digester.py

1 See the regular expression chapter of Python for Biologists for a discussion of this.
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Notice what's going on here: the digester() function is being defined 
inside the make_digester() function, using the variables that were 
passed to the make_digester() function. The newly created 
digester() function is returned from inside make_digester()❶. To 
use the make_digester() function, we call it with a pattern and an 
offset and store the returned value as a variable:

ecori_digester = make_digester('GAATTC', 1)
print(ecori_digester(dna))

In the code above, the variable ecori_digester points to the function 
that was created by make_digester(). No calculations are actually 
carried out until the second statement, where the ecori_digester() 
function is called.  We can use the make_digester() function factory 
to make multiple different functions that will generate fragments for 
different restriction enzymes:

ecori_digester = make_digester('GAATTC', 1) 
print(ecori_digester(dna)) 
 
ecorv_digester = make_digester('GATATC', 3) 
print(ecorv_digester(dna)) 

['CGATG', 'AATTCTATCGATATCGTGA'] 
['CGATGAATTCTATCGAT', 'ATCGTGA'] 

Notice how when we call the newly created functions, we don't have to 
pass in the pattern and offset as arguments, since these are effectively 
already part of the function definition. 

It's rare to see this technique in real world code, since the situations in 
which it is useful are often better handled using normal functions. Even 
the example above could be implemented more easily using partial 
function application, a functional programming technique whereby a 
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function has some of its argument fixed (here, pattern and offset) to 
yield another function with a smaller number of arguments. 

Recap
We started this chapter with a brief overview of a few different ways of 
looking at functional programming. The concepts introduced here – like 
immutability and side effects – are useful to know about, even if you don't
follow a particularly functional style of programming. We also covered a 
feature of the Python language that makes function programming 
possible: the ability to manipulate functions like any other data type. 

We then took a quick look at three built in Python list manipulation 
functions that exploit Python functional features: map(), filter() and 
sorted(). All three take functions as arguments, making them higher 
order functions, and all three are highly flexible as a result. 

Finally, we saw how we can use those same functional features to write 
higher order functions of our own. As with so many programming 
techniques, the value of higher order functions lies in their ability to 
encapsulate code and allow for separation of concerns.
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Exercises

BLAST processor
The file blast_result.txt in the functional_python folder of the exercises 
download contains a BLAST result in tabular format. Each row represents 
a hit and the fields, in order, give:

1. the name of the query sequence

2. the name of the subject sequence

3. the percentage of positions that are identical between the two 
sequences

4. the alignment length

5. the number of mismatches

6. the number of gap opens

7. the position of the start of the match on the query sequence

8. the position of the end of the match on the query sequence

9. the position of the start of the match on the subject sequence

10. the position of the end of the match on the subject sequence

11. the evalue for the hit

12. the bit score for the hit

Use a combination of map, filter and sorted to answer the following 
questions:

• How many hits have fewer than 20 mismatches?
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• List the subject sequence names for the ten matches with the 
lowest percentage of identical positions

• For matches where the subject sequence name includes the string 
"COX1", list the start position on the query as a proportion of the 
length of the match

FASTA processor
Write a function that copies FASTA format sequences from an input file to
an output file while allowing for arbitrary modification of both the header
and the sequence. Your function should take four arguments: the name of
the input file, the name of the output file, a header-modification function 
and a sequence-modification function. 

Write some code that uses your FASTA copying function to fix these 
common FASTA file problems, one at a time:

• The sequence is in lower case and you need it in upper case

• The sequence contains unknown bases that should be removed

• The headers contain spaces that should be changed to underscores

• The headers are too long and need to be truncated to ten 
characters

Write some code that uses your FASTA copying function to modify the 
header for each sequence. Try the following, one at a time:

• Append the length of the sequence to the header

• Append the AT content of the sequence to the header

• If the sequence starts with ATG and ends with a poly-A tail, append
the phrase "putative transcript" to the header
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Use the file sequences.fasta in the functional_programming folder of the 
exercises download to test your code. 
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Solutions

BLAST processor
We can make a fair bit of progress on this problem just by thinking about 
the overall strategy for solving it. We know that map(), filter() and 
sorted() work on lists, so we know that we're going to have to read in 
our BLAST result file and turn it into a list, where each element 
represents a single hit. 

But how should we store each individual element – should it be a string, a
tuple, a dict, an object? All of these approaches will work, but for now let's
just take the simplest possible approach and store each hit as a string 
read directly from the file. We can do this by creating an empty list, 
opening the file, reading each line, and appending it to the list:

lines = []
for line in open('blast_result.txt'):
    lines.append(line)

But wait: map(), filter() and sorted() don't just work on lists, they 
work on any iterable type (i.e. any type of data that we can use in a loop). 
We know that file objects are iterable, so we don't have to bother creating 
a list – we can just ask map(), filter() or sorted() to process a file 
object directly, and it will "see" the individual lines. In other words, we can
just write something like:

f = open('some_file.txt')
g = filter(some_function, f)

And filter() will process each line of the file in turn. 
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With that in mind, we can start working on a filter function to answer the 
first question – how many hits have fewer than 20 mismatches. This 
seems straightforward: we know that the fields in each line are separated 
by tab characters, and that the number of mismatches is the fifth field, so 
all we have to do in our filter function is split the line using tabs, take the 
fifth element of the resulting list, and ask if it's less than 20:

def mismatch_filter(hit_string): 
    mismatch_count = hit_string.split("\t")[4] 
    return mismatch_count < 20 

lines = filter(mismatch_filter, open('blast_result.txt'))

Unfortunately, running this code causes an error:

IndexError: list index out of range 

and if we take another look at the input file, we can see why:

# BLASTX 2.2.27+ 
# Query: gi|322830704:1426-2962 Boreus elegans mitochondrion...
# Database: nem.fasta 
# Fields: query id, subject id, % identity, ...
# 405 hits found 
gi|322830704:1426-2962 gi|225622197|ref|YP...

The first five lines are comments, which give information on the version 
of BLAST which generated the file, the name of the database, etc. Because
these lines don't follow the tab-separated standard expected by the 
mismatch_filter() function, splitting them on tabs returns a list with
fewer than five elements. 

To remove these comment lines, we could add an extra check to our 
mismatch_filter() function:
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def mismatch_filter(hit_string): 
    if line.startswith('#'):
        return False
    mismatch_count = hit_string.split("\t")[4] 
    return mismatch_count < 20 

but, thinking ahead, these lines are going to be a problem for all parts of 
this exercise, so why not create a filter function just to remove them? This
way, we'll be able to reuse it for the other parts of the exercise:

def comment_filter(line): 
    return not line.startswith('#') 
 
hit_lines = filter(comment_filter, open('blast_result.txt')) 

Now we can simply run our existing mismatch_filter() on the non-
comment lines and ask for the length of the filtered list1:

f = filter(mismatch_filter, hit_lines) 
print(len(f)) 

Unfortunately, this bit of code prints zero2 – clearly not the correct result. 
The problem is that in the mismatch_filter() function we're 
comparing the fifth field of the input file (which is a string) with the value
20 (which is an integer). Since, under the rules of Python, any string is 
always "bigger" than any integer, the function always returns False. We 
can fix the problem by turning the mismatch_count variable into an 
integer:

1 Remember that in Python 3, the result of filter is not a list but a filter object, so to get this bit 
of code to run under Python 3 we need to convert the filter object to a list before asking for the
length: print(len(list(f)))

2 Unless you're using Python 3, in which case it will case a TypeError
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def mismatch_filter(hit_string): 
    mismatch_count = int(hit_string.split("\t")[4]) 
    return mismatch_count < 20 

blast_filter.py

And now we get the correct answer of 25. 

On to the next section of the exercise: listing the subject sequence names 
for the ten matches with the lowest percentage of identical positions. 
This is going to be a three-step process: we need to sort the lines by the 
percent identity field, take the first ten lines of the resulting list, and then
extract the subject sequence names from those lines. 

To sort by percent identity, we need a key function that extracts the 
percent identity from a hit – in other words, a function that takes the 
entire hit string as its argument and return just the percent identity. 
Having learned the lesson about string/numerical data types in the 
previous bit of the exercise, we will be sure to convert the percent identity
to a number – in this case a floating point number, rather than an integer 
– before returning it:

def get_percent_id(hit_string): 
    return float(hit_string.split("\t")[2]) 

s = sorted(hit_lines, key=get_percent_id)

The next step is to take the first ten elements of the sorted list and assign 
them to a variable:

low_id_hits = s[0:10]  

Remember that the individual elements of low_id_hits are complete 
hit strings, not percentage identity scores – sorted() doesn't change 
the elements of the input list, it just re-orders them. 
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Finally, we need to turn each complete hit string into a subject sequence 
name using a mapping function. The code for the mapping function is 
very similar to the code for our filtering function: in both cases, we are 
simply taking a string, splitting it, and returning one of the resulting 
elements (in this case, the second element):

def get_subject(hit_string): 
    return hit_string.split("\t")[1] 

All we have to do to get the answer we want is to use map() to process 
the low id hits using the get_subject() function, and print out the 
results one by one. Here's the whole program:

def comment_filter(line):
    return not line.startswith('#') 
 
def get_percent_id(hit_string): 
    return float(hit_string.split("\t")[2]) 
 
def get_query(hit_string): 
    return hit_string.split("\t")[1] 
 
hit_lines = filter(comment_filter, open('blast_result.txt')) 
f = filter(mismatch_filter, hit_lines) 
s = sorted(hit_lines, key=get_percent_id)
low_id_hits = s[0:10] 
for subject in map(get_query, low_id_hits): 
    print(subject) 

blast_filter.py

and here's the output:
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gi|336287915|gb|AEI30246.1| 
gi|336287919|gb|AEI30248.1| 
gi|336287881|gb|AEI30229.1| 
gi|336287897|gb|AEI30237.1| 
gi|336287895|gb|AEI30236.1| 
gi|336287917|gb|AEI30247.1| 
gi|336287921|gb|AEI30249.1| 
gi|336287923|gb|AEI30250.1| 
gi|336287885|gb|AEI30231.1| 
gi|336287889|gb|AEI30233.1| 

Now for the last bit of the exercise – for matches where the subject 
sequence name includes the string "COX1", list the start position on the 
query as a proportion of the length of the match. This obviously involves 
a filter for the first part (selecting only hits with "COX1" in the subject 
name) and, though it may not be obvious at first,  we can use map() to 
address the second part. 

First the filter, and most of this code looks quite familiar by now. We split 
the input line using tabs, get the element we're looking for, and return 
True or False depending on whether or not the element contains the 
string "COX1":

def cox1_filter(hit_string): 
    subject = hit_string.split("\t")[1] 
    if "COX1" in subject: 
        return True 
    else: 
        return False 

Now the map. For this function, we need to extract two bits of 
information from the hit line – the query start and the length – then 
divide one by the other and return the result:
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from __future__ import division 

def start_ratio(hit_string): 
    query_start = int(hit_string.split("\t")[6]) 
    hit_length = int(hit_string.split("\t")[3]) 
    return query_start / hit_length 

Having written our two functions, getting the answer is just a case of 
applying them in the right order (not forgetting to filter out the comment 
lines):

def comment_filter(line): 
    return not line.startswith('#') 
 
def cox1_filter(hit_string): 
    subject = hit_string.split("\t")[1] 
    if "COX1" in subject: 
        return True 
    else: 
        return False 
 
def start_ratio(hit_string): 
    query_start = int(hit_string.split("\t")[6]) 
    hit_length = int(hit_string.split("\t")[3]) 
    return query_start / hit_length 
 
 
hit_lines = filter(comment_filter, open('blast_result.txt')) 
f = filter(cox1_filter, hit_lines) 
for ratio in map(start_ratio, f): 
    print(ratio) 

blast_filter.py
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0.0226244343891 
0.00900900900901 
0.0226244343891 
0.0226244343891 
0.0226244343891 
0.0226244343891 
0.00779727095517 
0.0430839002268 

149



Chapter 5: Functional Python

FASTA processor
This exercise is an example of a task that crops up pretty regularly in 
bioinformatics work flows. We want to parse some complex file format, 
tinker with a specific bit of data, then put it all back together again in the 
same format. 

Let's start off by writing a function that does nothing but read records 
from a FASTA file, split them into header and sequence, then write the 
header and sequence out to another file. This function won't do anything 
useful, but it will provide a nice framework for solving the rest of the 
exercise. To keep things simple, we'll assume that the sequence for each 
FASTA record is on a single line – i.e. the FASTA file looks like this:

>sequence1
actgatcgatcgatcgatcaatcgatcgacgatcgattacgtacgatcgtacgtacgtc
>sequence2
ttagcagtgactgtactctgtactacgtgctagtagctgtagctagtacc

and not like this:

>sequence1
actgatcgatcgatcg
atcaatcgatcgacga
tcgattacgtacgatc
gtacgtacgtc
>sequence2
ttagcagtgactgtac
tctgtactacgtgcta
gtagctgtagctagta
cc

which would make the parsing code more complex. 

Here's the straightforward copying function:
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def fasta_copy(source, destination): 
    output = open(destination, "w") 
    header = "" 
    for line in open(source): 
        if line.startswith('>'): 
            header = line.rstrip("\n")[1:] 
        else: 
            sequence = line.rstrip("\n") 
            output.write('>' + header +"\n") 
            output.write(sequence + "\n") 

There's not too much going on here. We just iterate over the input file line
by line, checking to see if it starts with a greater-than symbol. If it does, 
then it's a header line, in which case we set the value of the header 
variable to be the contents of the line starting at the second character (i.e.
we remove the greater-than symbol). If it doesn't, then it's a sequence 
line, in which case we write out the header and the sequence in FASTA 
format to the output file (remembering to put the greater-than symbol 
back on the start of the header).

The next step is to turn our fasta_copy() function into a true higher 
order function by allowing it to modify the header and sequence before 
they're written to the output file. Doing this requires surprisingly little 
change in the code – we just have to add a process_header() function 
and a process_sequence() function as arguments, and to run the 
header and sequence through the appropriate functions before writing 
them to the output:
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def fasta_copy(source, destination, process_header, process_sequence): 
    output = open(destination, "w") 
    header = "" 
    for line in open(source): 
        if line.startswith('>'): 
            header = process_header(line.rstrip("\n")[1:]) 
        else: 
            sequence = process_sequence(line.rstrip("\n")) 
            output.write('>' + header +"\n") 
            output.write(sequence + "\n") 

Attempting to use this code to solve the first bit of the exercise – change 
the sequence from lower case to upper case – we run into a problem. The 
fasta_copy() function demands that we supply a function to process 
the header, but for this particular job, we don't want to change the header.
We can't simply call fasta_copy() with only three arguments (source,
destination, and a process_sequence function) because that will 
cause an error – it requires four. The solution is to define a "do-nothing" 
function that simply returns its input1:

def do_nothing(x): 
    return x 

Now we can define a function that converts its input to upper case:

def to_upper(dna): 
    return dna.upper() 

and make the call to our fasta_copy() function:

fasta_copy('sequences.fasta', 'corrected.fasta', do_nothing, to_upper) 

Sure enough, when we open up the file corrected.fasta in a text editor, we 
can see that the sequence which was in lower case in sequences.fasta has 
been converted to upper case:

1 This is technically known as an identity function, and some languages (though not Python) 
have one as part of their standard library. 
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>sequence_in_lowercase 
ACTGATCATCATCACTCGATCGACTACTATCGATGTCGATCTCATCGTAG 

On to the next bit of the exercise: removing unknown bases from the 
sequences. There are many different ways to do this, but the simplest is 
probably using the re.sub() function from the regular expression 
module to replace all non-ATGC characters with an empty string. As 
before, we don't want to change the header, so we pass in the 
do_nothing() function as the third argument to fasta_copy():

import re
def remove(dna): 
    return re.sub(r'[^ATGCatgc]', '', dna) 

fasta_copy('sequences.fasta', 'corrected.fasta', do_nothing, remove) 

The third bit of the exercise involves changing spaces to underscores in 
the headers, so our strategy here is the other way around – we want to 
leave the sequences unchanged, so we supply do_nothing() as the 
fourth argument, and write a replacement function to process the 
headers:

def fix_spaces(header): 
    return header.replace(' ', '_') 

fasta_copy('sequences.fasta', 'corrected.fasta', fix_spaces, do_nothing)

Similarly, for the fourth bit of the exercise, we write a function to truncate
the headers, and pass it to our fasta_copy() function as the third 
argument:

def truncate(header): 
    return header[0:10] 
 
fasta_copy('sequences.fasta', 'corrected.fasta', truncate, do_nothing) 
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Looking at the next bit of the exercise, we run up against the limitations 
of our current implementation of fasta_copy(). We're being asked to 
write a function that appends the length of the sequence to the header, so
that this record in the input:

>normal_sequence 
ACTGGCATGCATCGTACGTACGATCGATCATGCGATGCTACGATCGACGTGTATATCC 

becomes this in the output:

>normal_sequence_58 
ACTGGCATGCATCGTACGTACGATCGATCATGCGATGCTACGATCGACGTGTATATCC 

The trouble is that in order to do this, our process_header() function 
needs to have access to the sequence as well as the header. In other 
words, both the header and the sequence need to be passed to 
process_header() as arguments, which they currently are not. To 
make the necessary modifications, we need to change the location of our 
process_header() function call to the point where the sequence is 
known. We also have to pass in both the header and sequence as 
arguments:

def fasta_copy(source, destination, process_header, process_sequence): 
    output = open(destination, "w") 
    header = "" 
    for line in open(source): 
        if line.startswith('>'): 
            header = line.rstrip("\n")[1:] 
        else: 
            sequence = process_sequence(line.rstrip("\n")) 
            new_header = process_header(header, sequence) 
            output.write('>' + new_header +"\n") 
            output.write(sequence + "\n") 

copy_fasta.py
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Unfortunately, this will break both of our existing header modification 
functions (fix_spaces() and truncate()), because they only expect 
one argument. If we want them to keep working, we'll have to rewrite 
them to take two arguments1 (and simply ignore the second one):

def fix_spaces(header, sequence): 
    return header.replace(' ', '_') 
 
def truncate(header, sequence): 
    return header[0:10] 

Now back to the problem: appending the sequence length to the header. 
Here's our header processing function and a call to fasta_copy that 
uses it:

def append_len(header, sequence): 
    return header + '_' + str(len(sequence)) 

fasta_copy('sequences.fasta', 'corrected.fasta', append_len, do_nothing)

Looking at the first few lines of corrected.fasta shows us that it's working:

>normal_sequence_58 
ACTGGCATGCATCGTACGTACGATCGATCATGCGATGCTACGATCGACGTGTATATCC 
>sequence_in_lowercase_50 
actgatcatcatcactcgatcgactactatcgatgtcgatctcatcgtag 
...

The next problem is very similar – appending the AT content. Because, 
like all good programmers, we are lazy, let's just reuse our get_at 
function from earlier in the chapter:

1 There are other possible ways to fix this – for example, using introspection to count the 
number of arguments expected by the process_header function and passing the correct 
number – but these are much more complicated and well beyond the scope of this exercise. 
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from __future__ import division 
def get_at(dna): 
        return (dna.count('A') + dna.count('T')) / len(dna) 
 
def append_at(header, sequence): 
    return header + '_' + str(get_at(sequence)) 
 
fasta_copy('sequences.fasta', 'corrected.fasta', append_at, do_nothing) 

The final bit of the exercise involves a slightly longer header modification 
function which uses a regular expression to check whether the header 
should be changed, but it's still quite easy to read:

def check_trans(header, sequence): 
    if re.search(r'^ATG.*A{5,}$', sequence): 
        return header + ' (putative transcript)' 
    else: 
        return header 
 
fasta_copy('sequences.fasta', 'corrected.fasta', check_trans, 
do_nothing) 

Before we leave this exercise, let's make a couple of modifications to our 
fasta_copy() function to make it a bit easier to use. It seems likely 
that most of the time we'll be using our function to modify either the 
headers, or the sequences, but rarely both. It makes sense, therefore to set
a default value of do_nothing() for both the header modification 
function and the sequence modification function:

def fasta_copy(source, destination, process_header=do_nothing, 
process_sequence=do_nothing): 

    ...

This way, when we call the fasta_copy() function we only have to 
supply functions for the things we want to change using keyword 
arguments – for example, our solution for the last bit of the exercise 
becomes:
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fasta_copy('sequences.fasta', 'corrected.fasta',              
process_header=check_trans) 

And we can even simply copy FASTA records without modifying anything 
by omitting both the process_header and the process_sequence 
arguments:

fasta_copy('from.fasta', 'to.fasta') 

Finally, because the do_nothing() function is so small, we can replace 
it with a lambda expression. This means that if we want to reuse the 
fasta_copy() function in another piece of code, we don't have to worry
about either including the do_nothing() function, or making sure that 
it's defined before fasta_copy(). This modification makes the first line 
of the fasta_copy() definition bigger – here I've written it over several 
lines for readability:

def fasta_copy( 
 source, 
 destination, 
 process_header=lambda x: x, 
 process_sequence=lambda x: x 
 ): 
    ...

copy_fasta.py

but it also means that fasta_copy() is now a self-contained bit of code 
which doesn't rely on any other functions being defined.
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6: Iterators, comprehensions & generators

Defining lists
Take a look back at the chapter on functional programming, and you'll 
notice that the bulk of the text talks about functions for manipulating 
lists of elements. This is not too surprising – the functional style of 
programming lends itself well to operations on lists of data. Also 
remember that in Python many things can be considered a lists: dicts are 
lists of key/value pairs, strings are lists of characters, files are lists of 
lines, etc. 

Looking back at map() and filter() specifically, it's clear that what we 
are doing when we use those functions is defining lists (although not 
necessarily creating them: recall that, in Python 3 at least, the map() 
operation is lazy so elements are not created until they are needed). For 
example, when we write this bit of code:

dna_list = ['TAGC', 'ACGTATGC', 'ATG', 'ACGGCTAG'] 
at_contents = map(get_at, dna_list) 

we are defining the list at_contents as being the result of calling the 
get_at function() on the elements of dna_list. Similarly, when we
write:

long_dna = filter(is_long, dna_list) 

we are defining the list long_dna as being the elements of dna_list for
which the function is_long() returns True. 
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Lists and iterables
Actually, it's not quite true to say that, for each of these examples, that 
we're defining a list. What we're actually defining is an iterable object; in 
other words, an object that can behave like a list insofar as we can iterate 
over it. We know from previous experience that lists, strings and files are 
all iterable objects (because we know that we can use them in for loops). 
Many types of Python objects also have methods that return iterable 
objects (we usually say that they return iterators); for example, the 
keys() method of a dict1, or the re.finditer() method. 

To this list of iterable objects we can add the results of calling map() and 
filter(). These two functions are interesting because they take an 
iterable object as one of their arguments, and they also return an iterable
object. So we can, for example, use map() to process characters in a 
string, then pass the resulting iterable object straight to a call to 
filter():

first = map(lambda x : x.upper(), 'abcdef') 
second = filter(lambda x : x in ['A', 'B'], first) 

The important thing to notice about the above code is that we don't care 
exactly what type of iterable object first() is. It could be a list, or an 
iterator, or something else entirely. All that matters is that first() is 
iterable and can therefore be passed to the filter() function. 

It turns out that the combination of map() and filter() in this way is 
pretty common, and Python has a special type of syntax for defining lists 
in this way. These special expressions are called comprehensions. 

1 The exact kind of iterable object returned by keys() depends on the version. In Python 2 it 
returns a list, whereas in Python 3 it returns an iterator. 
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List comprehensions
List comprehensions allow us to define a list just like we would using the 
map() function. Syntactically, list comprehensions resemble a back to 
front for loop. Here's an example of a list comprehension that defines 
the list of lengths of sequences in the dna_list variable: 

dna_list = ['TAGC', 'ACGTATGC', 'ATG', 'ACGGCTAG']  
lengths = [len(dna) for dna in dna_list] 

list_comprehension.py

Compare the list comprehension above with the equivalent for loop:

dna_list = ['TAGC', 'ACGTATGC', 'ATG', 'ACGGCTAG']  
lengths = []
for dna in dna_list:
    lengths.append(len(dna))

When writing the for loop, we write for dna in dna_list first, then 
carry out some processing on the loop variable in the body (len(dna)) 
and append the result to the final list. When writing the same expression 
as a list comprehension, we write the processing part first, then for dna
in dna_list, and enclose the whole thing in square brackets. Just as 
with lambda expressions, the processing part of a list comprehension has 
to be a single expression. For completeness, here's the same code 
expressed as a map() (we've already seen this code in the functional 
programming chapter):

dna_list = ['TAGC', 'ACGTATGC', 'ATG', 'ACGGCTAG'] 
lengths = map(len, dna_list) 

Let's look at a couple more examples that we've already seen how to write 
using map(). Here's a list comprehension that defines a list of the AT 
contents of the DNA sequences:
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dna_list = ['TAGC', 'ACGTATGC', 'ATG', 'ACGGCTAG'] 
ats = [dna.count('A') + dna.count('T')) / len(dna) for dna in dna_list]

The expression which calculates the AT content for a single element is 
exactly the same as we have used before, but when we write it this way we
don't have to put it in a function or a lambda expression. 

Here's a list comprehension that defines a list of the first one hundred 
thousand powers of two:

l = [2 ** x for x in range(100000)]

Compared to the map solution:

l = list(range(100000))
m = map(lambda x : 2 ** x, l)

the list comprehension is much more readable. 

Comprehensions with conditions
The real power of list comprehensions becomes apparent when we use 
them to map and filter at the same time. To do this, we just add an if 
expression at the end of the comprehension to specify the elements that 
we want. Here's a list comprehension that defines the list of lengths of all 
DNA sequences that start with A:

dna_list = ['TAGC', 'ACGTATGC', 'ATG', 'ACGGCTAG']  
lengths = [len(dna) for dna in dna_list if dna.startswith('A')] 

Notice that, because we want to use the DNA sequence itself and not the 
length in the condition, we couldn't achieve the same effect by using 
filter() on a list of lengths. Conditions in a list comprehension need 
to be a single expression (just like when we are writing a lambda 
expression), so if we want to implement a condition that requires several 
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statements, we can just wrap it up in a function, then call the function in 
the condition. For example, to generate a list of lengths of DNA sequences
whose AT content is less than 0.6:

from __future__ import division 
dna_list = ['TAGC', 'ACGTATGC', 'ATG', 'ACGGCTAG'] 
 
def is_at_poor(dna): 
    at = (dna.count('A') + dna.count('T')) / len(dna) 
    return at < 0.6 
 
at_poor_dna_lengths = [len(dna) for dna in dna_list if is_at_poor(dna)]

at_comprehension_filter.py

For most applications, the choice of whether to use list comprehensions 
or map()/filter() is a personal, stylistic one. List comprehensions are 
generally considered more "Pythonic" and there's no doubt that they can 
be easy to read while still performing quite complex operations. For 
example, here's a list comprehension that defines the list of sequence 
headers from a FASTA file. It works by using a condition to select just the 
lines that start with a greater-than symbol, then taking everything after 
the first character:

[line[1:] for line in open('sequences.fasta') if line.startswith('>')]

fasta_comprehension.py

Generator expressions
One drawback to using list comprehensions over map() and filter() is
that they are not lazy1. Happily, Python has a built in lazy equivalent to 
the list comprehension called the generator expression. The syntax is 

1 See the section on map() in the chapter on functional programming for an explanation of 
what laziness is and why it's a good thing. 
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exactly the same, but it uses parentheses rather than square brackets. 
Here's our long-running map example from before, written as first a list 
comprehension, then as a generator expression:

# this statement takes several minutes to execute
l = [2 ** x for x in range(100000)]
# this statement takes no time at all to execute
l = (2 ** x for x in range(100000))

An important difference between list comprehensions and generator 
expressions, and one that will cause trouble if you forget it, is that 
generator expressions are exhaustible; in other words, you can only iterate
over them once. We've encountered the same behaviour before with file 
objects – once you iterate over the lines in a file, you cannot iterate over 
them again without re-opening the file. Be careful not to write code that 
iterates over the same generator multiple times, as it will probably not do 
what you want:

gen = (x * 2 for x in range(5))
for i in gen:
    print(i) # this line runs five times
# now the generator is exhausted
for i in gen:
    print(i) # this line never runs as there are no more elements in gen

Nested comprehensions
We'll finish our survey of list comprehensions by taking a quick look at 
one final feature: we can use them to iterate over multiple variables at 
once by adding extra for expressions. This is the exact equivalent of 
using nested for loops in procedural code. For example, we can generate 
a list of all possible dinucleotides by iterating over a list of bases twice 
(once using the base1 variable and once using the base2 variable) and 
concatenating the two bases at each iteration:
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bases = ['A', 'T', 'G', 'C']
dn = [base1 + base2 for base1 in bases for base2 in bases]
# dn is now ['AA', 'AT', 'AG', 'AC', 'TA', 'TT', 'TG', 'TC', ...] 

This is particularly handy for expressing a very common bioinformatics 
theme: pairwise processing of objects. Imagine we have a list of objects 
(representing DNA sequences, protein domains, experimental conditions, 
etc.) and a function (we'll call it process()) that will take two such 
objects as arguments and return the result of running some analysis on 
them. Using a list comprehension, we can collect the result of running the
function on each possible pair of different objects in one expression:

r = [
    process(a, b) 
    for a in object_list 
    for b in object_list 
    if a != b
    ]

Note how we need to use a condition as part of the comprehension to 
avoid processing an object with itself. 

Dictionary comprehensions
As I pointed out previously, dictionaries can be thought of as simple lists 
of key/value pairs (with the special ability that the value for a given key 
can be looked up very quickly), so it makes sense that there's an 
analogous type of comprehension for defining them. The expression has 
to be represented as key:value, and the whole comprehension is 
surrounded by curly brackets:

d = {x:x+1 for x in range(10) if x > 5}
# d is now {8: 9, 9: 10, 6: 7, 7: 8}
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There's no lazy equivalent for a dictionary comprehension (if you think 
about it, the idea doesn't really make sense since you'd have to evaluate 
the whole dict as soon as you want to look up a single value). 

Dict comprehensions can be useful when we want to pre-calculate some 
bit of data for each element in a list and then rapidly look up the bit of 
data corresponding to one particular element. For example, here's how 
we'd define a dict where the keys are DNA sequences and the values are 
AT contents using our function defined earlier:

from __future__ import division 

dna_list = ['TAGC', 'ACGTATGC', 'ATG', 'ACGGCTAG'] 
def get_at(dna): 
     return (dna.count('A') + dna.count('T')) / len(dna) 

d = { x : get_at(x) for x in dna_list }
#d is {'ACGTATGC': 0.5, 'ATG': 0.66, 'ACGGCTAG': 0.375, 'TAGC': 0.5}

dict_comprehension.py

We have to be remember, when doing this, that we'll get one key/value 
pair in the resulting dict for each unique DNA sequence in the input list.  
Any duplicate values will simply be overridden. 

Another very useful thing we can do with dict comprehensions is to 
define a dict which allows us to rapidly look up an object based on one of 
its properties. Imagine we have a list of DNASequence objects1, each of 
which has a name field, and all the name fields are unique. We can create 
a name->object dict like this:

name2object = { d.name : d for d in list_of_dna_objects }

which will allow us to retrieve the whole DNASequence object simply by 
knowing the name:

1 See the chapter on object oriented programming for an implementation of this. 
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my_object = name2object.get('ABC123')

Set comprehensions
We encountered sets in the chapter on complex data structures. Like a 
list, each element in a set is a single item, but like a dict, elements have to
be unique. Internally, set elements are stored in a way that allows us to 
check for the existence of an item in a set very rapidly. 

We write set comprehensions in exactly the same way as list 
comprehensions, but using curly brackets rather than square ones:

even_integers = {x for x in range(1000) if x % 2 == 0}

For example, we can create a set of all the DNA sequences in a list that are
longer than 100 base pairs:

long_dna = {d for d in dna_list if len(d) > 100}

We could, of course, create a list of the DNA sequences rather than a set:

long_dna = [d for d in dna_list if len(d) > 100]

but if the resulting list had a very large number of elements, checking to 
see whether a particular DNA sequence was in it could become very slow, 
whereas with a set the same operation is very fast regardless of the 
number of elements.

Iterators and generators
We've seen, in this chapter and the last, that iterable types (things like 
strings, lists and dicts) are extremely useful in Python. We can iterate 
over their elements using for loops; we can process them using 
functional tools like map() and filter(), and we can use them to 
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define new data structures using comprehensions. Given that iteration is 
such a powerful idea, we might want to use it in our own code: in other 
words, we might want to create our own iterable types.

The most basic mechanism for doing this is the iterator interface1. To 
make use of the iterator interface, we have to give our class a method with
the special name __iter__() (the word iter surrounded by double 
underscores) which returns an iterator. We can get an iterator for built in 
classes like strings by called the iter() function on them2. So for very 
simple cases where iterating over the object is just a case of iterating over
one of its variables, we can implement __iter__() by just returning the
iterator of the variable that holds the data. Here's an example using a 
simplified version of the DNASequence class from the chapter on object 
oriented programming:

class DNASequence(): 
    sequence = 'atgccgcat' 
 
    def __iter__(self): ❶
        return iter(self.sequence) 
 
my_seq = DNASequence() 
for base in my_seq: ❷
    print(base)

iterator.py

In the __iter__() method❶, we simply return the iterator supplied by 
the sequence string variable. The presence of the __iter__() method 
is what allows us to iterate over the DNASequence directly❷. If we didn't 
have the __iter__() method, we'd have to iterate over the sequence 
variable explicitly like this:

1 Since this section uses class definitions, it's a good idea to make sure you've read the chapter 
on object oriented programming if you haven't already. 

2 Notice that the difference between the built in iter() function, and the __iter__() 
method that we give to our class – the latter is surrounded by double underscores. 
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for base in my_seq.sequence:
    print(base)

The first approach, using __iter__(), is better not just because it 
involves less typing, but because it doesn't rely on the implementation 
details. We could change the way that the sequence is stored in the class 
(for example, changing the name of the variable) and as long as we 
altered the __iter__() method, lines of code like 

for base in my_seq:

would continue to work. 

Let's now look at a slightly more sophisticated example; what if we 
wanted our object to iterate over codons rather than individual bases? To 
do this, we need to look in a little more detail about what an iterator 
actually is. The definition is quite simple: an iterator is just an object that 
implements a next() method1. The next() method, when called, has to 
return the next element in the sequence or, if the end of the sequence has
been reached, raise a StopIteration exception2. For our case, the 
easiest thing to do is to turn the DNASequence class into an iterator by 
implementing a next() method, and modify the __iter__() method 
to simply return the object itself:

1 In Python 3, the name of the method has been changed to __next__().
2 See the chapter on exceptions for details of how this works.
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class DNASequence(): 
    position = 0 
    sequence = 'atgccgcat' 
 
    def __iter__(self): 
        return self 
 
    def next(self): ❶
        if self.position < (len(self.sequence) - 2): ❷
            codon = self.sequence[self.position:self.position+3] 
            self.position += 3 
            return codon 
        else: 
            raise StopIteration 
 
my_seq = DNASequence() 
for codon in my_seq: 
    print(codon)

codon_iterator.py

The above code is quite complicated, so let's take a look at it step by step. 
The job of the next() method❶ is to return the next element in the 
sequence (i.e. the next codon). To do that, it needs an extra variable – 
position –  which keeps track of the current position in the sequence. If
there are at least three bases remaining after the current position❷ we 
extract them, add three to the position and then return the codon. If, 
however, the current position is within two bases of the end of the 
sequence, then we have reached the end and there are no more elements 
to return, so we tell Python to stop iterating❸. If we look at the output 
from this code then we can see that the individual elements when 
iterating over a DNASequence are now codons rather than individual 
bases:

atg 
ccg 
cat 
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Although this solution takes care of hiding the complexity of codon 
iteration inside the object, it's not very satisfactory. In the real world, we 
are likely to want to iterate over an object in multiple different ways. For 
example, with our DNASequence object we might want to iterate over 
individual bases, codons, or kmers of a specified length. Happily, Python 
provides a simple mechanism for multiple iteration: generators.

A generator is like a method, but instead of using the return keyword to 
return a single result, it uses the yield keyword to return results one at a
time. We can see how generators work by looking at a familiar example –  
a method that returns overlapping 4mers from an input sequence. Here's 
a normal method that carries out the job:

def get_4mers(dna):
4mers = [] 
for i in range(len(dna) - 3): 

    4mers.append(dna[i:i+4]) 
return 4mers

And here's the same idea written as a generator:

def generate_4mers(dna): 
    for i in range(len(dna) - 3): 
        yield dna[i:i+4] 
 
for x in generate_4mers('actggcgtgcatg'): 
    print(x)

generator.py

Notice how the result of calling generate_4mers is not a list of 4mers, 
but rather an iterator that will iterate over the resulting list when used in 
a for loop (or a map(), or a filter(), or a comprehension, etc.). 
Arguably, the generator version is much easier to read; it's also much 
more memory efficient as it only has to store a single 4mer at a time. 
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Now we've seen how generators work, we can rewrite our DNASequence 
example to take advantage of them. Here's a DNASequence class which 
allows three types of iteration – by base, by codon, or by kmer:

class DNASequence(): 
 
    sequence = 'atgccgcat' 
 
    def bases(self): 
        return iter(self.sequence) 
 
    def codons(self): 
        for i in range(0, len(self.sequence) -2, 3): 
             yield self.sequence[i:i+3] 
 
    def kmers(self, k): 
        for i in range(len(self.sequence) - k +1): 
            yield self.sequence[i:i+k] 
      
my_seq = DNASequence() 
for base in my_seq.bases(): 
    print(base) 
for codon in my_seq.codons(): 
    print(codon) 
for kmer in my_seq.kmers(5): 
    print(kmer)

multiple_generators.py

The bases() method uses the simple approach to iteration we saw 
earlier, whereas the codons() and kmers() method use generators. 
Notice that we have to supply an argument to the kmers() method to 
tell it what value of k we want. This version of the DNASequence class 
has the benefit that the processing code (outside the class definition) is 
extremely readable, and the output shows that everything is working as 
expected:
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a 
t 
g 
c 
c 
g 
c 
a 
t 
atg 
ccg 
cat 
atgcc 
tgccg 
gccgc 
ccgca 
cgcat 

Recap
We started this chapter by giving a little bit of extra context to our 
previous look at functional programming, and saw that often what we are 
interested in is defining sequences of data. We then looked at how, in 
many cases, Python's special list comprehension syntax could replace 
map() and filter() in a concise and readable way. We then extended 
the basic idea to look at comprehensions for other data types – dicts and 
sets – along with a lazy equivalent for lists. 

Finally, we saw how to exploit the power of Python's sophisticated 
iteration system for our own classes and objects, allowing us to 
encapsulate the complexities of iteration inside objects and write cleaner,
more readable code.
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Exercises

BLAST processor
Rewrite your solutions to the BLAST processor exercises from the 
previous chapter to use list comprehensions. Here's a reminder of the 
questions we want to answer:

• How many hits have fewer than 20 mismatches?

• List the subject sequence names for the ten matches with the 
lowest percentage of identical positions

• For matches where the subject sequence name includes the string 
"COX1", list the start position on the query as a proportion of the 
length of the match

Primer search
Write a generator which will generate all possible primers of a given 
length (hint: look back at the chapter on recursion for an example of a 
function that will act as a starting point). Write a second generator which 
uses the first to generate all possible pairs of such primers. 
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Solutions 

BLAST processor
This is a pretty straightforward exercise – we're just taking our solutions 
to a previous set of problems and expressing them in a different way. 
However, it's a very useful one to do, as seeing comprehensions and 
map()/filter() side by side is a great way to explore the differences in 
syntax. For each of the code samples below I'll show the 
map()/filter() solution first, followed by the equivalent 
comprehension.

First of all, recall that we have to filter out lines that start with "#" as 
these lines contain comments rather than BLAST hit data. Our original 
solution used filter(), but the same logic applies nicely to the list 
comprehension solution:

# filtering out comment lines using a function and filter
def comment_filter(line): 
    return not line.startswith('#') 
 
hit_lines = filter(comment_filter, open('blast_result.txt')) 

# filtering out comment lines using a list comprehension
hit_lines = [l for l in open('blast_result.txt') if not 
l.startswith('#')]

blast_filter.py

Notice that the expression that gets evaluated for each lines is just the 
line itself (l), since for this comprehension we don't want to alter the 
lines at all. 

Now we can tackle the first question.  In our original solution we used 
filter() to select only the hit lines where the fifth element after 
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splitting (i.e. the number of mismatches) was less than 20. For the new 
solution, we apply exactly the same logic using a comprehension: 

# selecting low-mismatch hits using a filter function
def mismatch_filter(hit_string): 
    mismatch_count = int(hit_string.split("\t")[4]) 
    return mismatch_count < 20 
f = filter(mismatch_filter, hit_lines) 
print(len(f)) 

# selecting low-mismatch hits using a list comprehension
few_mismatch_hits = [ l for l in hit_lines if int(l.split("\t")[4]) < 20
]
print(len(few_mismatch_hits))

On to the second question. In our original solution this was a three-part 
process: sort the list of hits by percent ID, take the first ten elements, 
then extract the subject string using a map(). For the new solution, the 
first step is the same, but we can do the last two using a single list 
comprehension:

# get subject names for the ten hits with the lowest percent id 

def get_subject(hit_string): 
    return hit_string.split("\t")[1] 

hits_sorted_by_percent_id = sorted(hit_lines, key=get_percent_id) 
low_id_hits = hits_sorted_by_percent_id[0:10] 
for subject in map(get_subject, low_id_hits): 
    print(subject) 

# same using a list comprehension
subjects = [ l.split("\t")[1] for l in hits_sorted_by_percent_id[0:10] ]
print(subjects)

The final question involves both a filter() and a map(). First we select
the hits where the subject name contains the string "COX1", then we map 
those lines to their ratio of query start position to hit length. We can fit 
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the whole thing into a single list comprehension – below I've split the 
comprehension over multiple lines to make it easier to read:

# solution using filter and map
# this requires the following two functions
def cox1_filter(hit_string): 
    subject = hit_string.split("\t")[1] 
    if "COX1" in subject: 
        return True 
    else: 
        return False 
        
def start_ratio(hit_string): 
    query_start = int(hit_string.split("\t")[6]) 
    hit_length = int(hit_string.split("\t")[3]) 
    return query_start / hit_length 

cox1_hits = filter(cox1_filter, hit_lines)
for ratio in map(start_ratio, cox1_hits):
    print(ratio)

# solution using a list comprehension
# none of the functions above are used
ratios = [ 
    int(l.split("\t")[6]) / int(l.split("\t")[3]) 
    for l in hit_lines 
    if "COX1" in l.split("\t")[1] 
] 
print(ratios) 

blast_filter.py

Primer search
Since the interesting part of this exercise is not the generation of possible
primers per se, but the use of generators, we'll start with the recursive 
kmer generating program from the chapter on recursion. Let's remind 
ourselves of what it looks like:
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def generate_primers(length): 
    if length == 1: 
        return ['A', 'T', 'G', 'C'] 
    else: 
        result = [] 
        for seq in generate_primers(length - 1): 
            for base in ['A', 'T', 'G', 'C']: 
                result.append(seq + base) 
        return result 

We won't go into the details of how it works – you'll find an in-depth look 
at the implementation in the chapter on recursion. Instead, let's 
concentrate on the result that is produced. We know that the output from 
this function is a list of all possible combinations of the four DNA bases 
of a given length, which allows us to make some confident predictions 
about the size of the output. The number of elements in the returned list 
will be four raised to the power of the sequence length. So, a call to 
generate_primers(3) will return a list with 64 elements, but if we 
double the length to 6 then we'll get over four thousand elements in the 
returned list, and if we double it again to 12 we get over sixteen million 
elements.  For realistic primer lengths of around twenty bases, the 
number of elements in the returned list is on the order of one trillion, 
which is obviously not going to fit into memory1. 

This function, therefore, is a good candidate for being rewritten as a 
generator. If we can do that, then we'll only ever have to store a single 
element in memory at any one time. Remarkably, converting this function
to a generator requires very few changes. We simply replace each instance
where we return a value, or add a new element to the result list, to a 
yield statement:

1 Of course, any program that attempts to carry out any kind of processing on a list of one 
trillion elements is probably going to be prohibitively slow regardless of how the elements are 
generated, but we'll overlook that for this example. 
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def generate_primers(length): 
    if length == 1: 
        for base in ['A', 'T', 'G', 'C']: 
            yield(base) 
    else: 
        for seq in generate_primers(length - 1): 
            for base in ['A', 'T', 'G', 'C']: 
                yield(seq+base) 

primer_search.py

The nice thing about this transformation from a list-returning function to
a generator is that it's completely transparent to any code which calls this
function. If we have, elsewhere in our program, a line that looks like this:

for primer in generate_primers(15):
    # process a single primer

The magic of iteration will ensure that it continues to run as before, even 
though the return value of generate_primers() is no longer a list but 
a generator. 

Now we can tackle the final bit of this problem: writing another generator
whose job is to generate all possible pairs of primers. It's surprisingly 
straightforward: we just iterate over all possible forward primers, and all 
possible reverse primers, and yield each pair as a tuple in turn:

def generate_pairs(length): 
    for forward in generate_primers(length): 
        for reverse in generate_primers(length): 
            yield(forward, reverse) 

primer_search.py

Just as before, writing this as a generator rather than a list-returning 
function ensures that only one pair needs to be stored in memory at a 
time, but we can still write code that treats the list of pairs just like a list:
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for f,r in generate_pairs(9):
    # do something with f and r

One final note: the problem of generating all possible combinations of 
letters from a fixed alphabet (of which this exercise is an example) is 
quite a common problem in programming, so there's a built in Python 
module to handle it. The itertools.product() function takes a list of
tokens and a repeat number, and generates a sequence of tuples 
containing every possible sequence of tokens for the given length:

for seq in itertools.product('ATGC', repeat=3): 
    print(seq) 

('A', 'A', 'A') 
('A', 'A', 'T') 
('A', 'A', 'G') 
('A', 'A', 'C') 
('A', 'T', 'A') 
('A', 'T', 'T') 
('A', 'T', 'G') 
('A', 'T', 'C') 
...

Of course, for this particular question we want the bases joined together 
to make a DNA sequence:

for seq in itertools.product('ATGC', repeat=3): 
    print(''.join(seq)) 
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AAA 
AAT 
AAG 
AAC 
ATA 
ATT 
ATG 
ATC 
AGA 
...

which, to bring this discussion full circle, we can do using a list 
comprehension!

[''.join(seq) for seq in itertools.product('ATGC', repeat=3)]
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7: Exception handling 
Something that becomes clear depressingly quickly when we first start to 
learn to code is that our programs often don't behave exactly as we like. 
Several different types of problems occur. There are straightforward 
syntax errors, where we forget a colon or accidentally leave a line 
unindented:

for base in dna
print(base)

As we know from experience, syntax errors will prevent our program from
running at all. 

There are also typos and incorrect function and variable names, and 
things like trying to use an integer as a string:

print(dna.converttouppercase)
print('abc' + 3)

These are different from syntax errors because they will not stop the 
program running entirely, but they will cause it to exit with an error 
message when it reaches that point in the code. 

Then there are bugs – more subtle errors that will not prevent the 
program from running or create an error message, but will not do quite 
what you want:

dna = 'atctgcatattgcgtctgatg'
a_count = dna.count('A') #whoops, the sequence is in lower case

What all these types of errors have in common is that they are an intrinsic
property of the code. In other words, if we run a piece of code that 
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contains one of these errors then we'll encounter the same problem every 
time in a very predictable way. 

However, there's another class of errors that are not intrinsic to the code, 
but instead are the result of some external situation. For example, 
consider the common error that you get when you try to open a file that 
doesn't exist:

IOError: [Errno 2] No such file or directory: 'missing.txt'

This error is not a property of the code, but of the environment in which 
it is being run. If we were to take the exact same piece of code that caused
the error and run it at a different time1 or in a different folder it might run
perfectly well. In programming, we refer to situations like this as 
exceptions, and Python's built in mechanism for handling them is called 
exception handling2. 

A quick note before we dive in: the first section of this chapter uses a 
rather boring non-biological example to illustrate how to use exceptions. 
That's because, for reasons that will become clear later on in the chapter, 
it's easier to get to grips with the basic exception system using built in 
functions. Later in the chapter we switch to biological examples. 

Catching exceptions
The "No such file" message is what the user of a program will see if the 
code tries to open a non-existent file. The message is part of Python's 
response to an exception (the program stopping is another part of the 
response). It's relatively helpful for the programmer, as it identifies the 

1 i.e. after we had created the missing file.
2 Exception handling is useful for dealing with many other situations as well, but we'll come to 

those later in the chapter.
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exact error that occurred, but it's not very helpful for the user. If we're 
writing a program that reads data from files, we might want to intercept, 
or catch, the exception that caused the error message to be printed and 
handle it in the code. To catch an exception, we enclose the bit of the code
that has the potential to cause the exception (in this case, the open() 
function) in a try block, and add the code that we want to run in the case
of an exception in an except block:

try: 
    f = open('misssing.txt') 
    print('file contents: ' + f.read())
except: 
    print("sorry, couldn't find the file") 

try _excpet.py

try and except blocks work just like the for/if/function blocks that 
we're already familiar with – they end with a colon and the lines inside 
them are indented. When we run the above code, the lines in the try 
block are executed and if one of them causes an exception, the program 
jumps directly to the except block and starts executing the code there. 
In the above code, the open() function call will create an exception when
the file is not found (we say that the open() function raises an exception)
and so the print() line will not be executed. Because we have caught 
the exception, we don't get the usual error message; instead, our 
customized error message is printed:

sorry, couldn't find the file

There's another important effect of catching the exception: rather than 
our program terminating, as normally happens when Python encounters 
an error, it will continue running at a point after the try/except blocks. 
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This allows the program to try to recover from the error. If we add a line 
of code at the end of our example:

try: 
    f = open('misssing') 
    print('file contents: ' + f.read())
except: 
    print("sorry, couldn't find the file") 
print("continuing....")

and re-run it, we'll see that execution continues:

sorry, couldn't find the file
continuing...

Catching specific errors
There's one problem with the above approach to handling errors: it 
catches any kind of exception and responds to it in the same way. 
Consider this bit of code that reads the contents of a file, turns it into an 
integer, then adds five and prints the result:

try: 
    f = open('my_file.txt') ❶
    my_number = int(f.read()) ❷
    print(my_number + 5) 
except: 
    print("sorry, couldn't find the file") 

Now there are two possible situations that could cause an exception: the 
file could be missing (in which case we will get a IOError when we try to 
open it❶) or the contents could be a string that can't be parsed into an 
integer (in which case we'll get a ValueError when we try to convert 
it❷). What happens if we create a new file called my_file.txt which 
contains the text "twenty-three" and run the code? The call to int() will 
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raise a ValueError, which will get caught by the except block and we 
will see the very misleading error message:

sorry, couldn't find the file

What we need is a way of specifying that our except block is only 
intended to handle one specific type of exception: an IOError. Happily, 
it's very easy to do this in Python – we just give the type of error as part of
the except block definition:

try: 
    f = open('my_file.txt') 
    my_number = int(f.read()) 
    print(my_number + 5) 
except IOError: 
    print("sorry, couldn't find the file") 

Now when we run the code with our my_file.txt present the exception, 
which is a ValueError, is not handled by our except block, and causes 
the correct default error message to be printed:

ValueError: invalid literal for int() with base 10: 'twenty-
three\n' 

but we still get our custom error message if the file is missing.

We can make our code even better by writing separate except blocks for 
the two possible errors. We just place the except blocks one after 
another:
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try: 
    f = open('my_file.txt') 
    my_number = int(f.read()) 
    print(my_number + 5) 
except IOError: 
    print("sorry, couldn't find the file") 
except ValueError: 
    print("sorry, couldn't parse the number") 

exception_types.py

This is a very powerful technique, as it allows us to write code that can 
respond appropriately to many different types of error. If we still want to 
write an except block that handles multiple types of exception then we 
just write them as a tuple1:

try: 
    f = open('my_file.txt') 
    my_number = int(f.read()) 
    print(my_number + 5) 
except (IOError, ValueError): 
    print("sorry, something went wrong") 

In the above examples, we've limited ourselves to printing out error 
message in the except blocks but we can use except blocks to run any 
kind of code. For instance, we could prompt the user to enter a new file 
name in the event of an IOError, or ask them to enter the desired value 
for my_number if there's a ValueError. To stop the examples from 
getting too long, the remaining examples in this chapter will mostly use 
print() statements in except blocks. Just remember when you're 
reading them that except blocks can hold arbitrary chunks of code – 
they can call functions, create objects, or do anything else that normal 
code can do. 

1 Take a look at the chapter on complex data structures if you've never heard of tuples before.
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Getting information about the exception
Our error messages in the file-opening-and-parsing example above are 
still not perfect, because there are multiple different reasons that an 
exception might occur. For example, trying to open a non-existent file 
will cause an IOError, but so will trying to open a file that you don't 
have permission to view, or attempting to open a folder rather than a file. 
The error message that we display to the user would be more helpful if it 
contained information about the specifics of the exception.

To get hold of that information, we have to remember that an exception is
just an object1 (just like a file object or a regular expression match object).
We can access the exception object by making one small addition to our 
except block:

except IOError as ex:

and we can then use the variable ex to refer to the exception object. The 
details of what we can do with exception objects differ according to the 
type of exception. For IOError exceptions, we can get a string 
description of the error by referencing the strerror field.  Here's an 
updated version of our example that, when handling an IOError, prints 
out the error string as part of the error message:

try: 
    f = open('my_file.txt') 
    my_number = int(f.read()) 
    print(my_number + 5) 
except IOError as ex: 
    print("sorry, couldn't open the file: " + ex.strerror) 
except ValueError: 
    print("sorry, couldn't parse the number") 

1 Consequently, the following explanation will make more sense if you've read the chapter on 
object oriented programming.
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Now when we run the code and encounter an IOError, the first part of 
the error message will always be the same, but the second part will 
pinpoint the specific nature of the problem:

sorry, couldn't open the file: No such file or directory
sorry, couldn't open the file: Permission denied
sorry, couldn't open the file: Is a directory

To figure out what properties are available for a given exception class we 
can consult the Python documentation1, but there's also a more generic 
mechanism for getting the details of an error. Exception objects have a 
field called args2, which is a list of details for the error. For most types of 
exception, one element of the list will be a string giving details of the 
problem. For ValueError objects, it's the first element, so we can modify
our ValueError hander thus:

try: 
    f = open('my_file.txt') 
    my_number = int(f.read()) 
    print(my_number + 5) 
except IOError as ex: 
    print("sorry, couldn't find the file: " + ex.strerror) 
except ValueError as ex: 
    print("sorry, couldn't parse the number: " +  ex.args[0]) 

exception_details.py

and when we run the code we'll get a more detailed error as part of our 
error message if the contents of the file can't be parsed:

sorry, couldn't parse the number: invalid literal for int() with 
base 10: '12.56\n'

1 http://docs.python.org/2/library/exceptions.html
2 So called because it holds the arguments used to construct the object – see the chapter on 

object oriented programming for more details on constructors.
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else blocks in exception handling
In the file parsing example we've been looking at above, there are three 
lines of code in the try block. The first line can raise an IOError if 
there's a problem opening the file, and the second line can raise a 
ValueError if there's a problem reading an integer from it. But the third
line – where we print a value – might also cause an IOError1. If this 
happens, then the exception will be picked up by our first except block, 
and our program will misleadingly inform the user that there was a 
problem reading the input file. 

We can avoid this situation by moving the print() line outside the try 
block:

try: 
    f = open('my_file.txt') 
    my_number = int(f.read()) 
except IOError as ex: 
    print("sorry, couldn't find the file: " + ex.strerror) 
except ValueError as ex: 
    print("sorry, couldn't parse the number: " +  ex.args[0]) 
print(my_number + 5) 

but that just brings up a different problem: if there is an error, either in 
reading the file or parsing the number, then the value of my_number will 
not be set and we won't be able to print it. What we really need is a way of
specifying that the print() line is only to be executed if there wasn't 
any exception raised in the try block. We can do this by placing the code 
in an else block:

1 For example, if we are running this bit of code using shell redirection and we run out of space 
on the output file device.
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try: 
    f = open('my_file.txt') 
    my_number = int(f.read()) 
except IOError as ex: 
    print("sorry, couldn't find the file: " + ex.strerror) 
except ValueError as ex: 
    print("sorry, couldn't parse the number: " +  ex.args[0]) 
else:
    print(my_number + 5) 

else.py

The else block is run only if there were no exceptions raised in the try 
block. It's a useful technique for a very specific scenario: when we want to 
run code only in the absence of earlier exceptions without catching 
exceptions for the code itself. 

finally blocks in exception handling
What if there's a bit of code that we want to run regardless of whether or 
not an exception was raised? For example, imagine that our program 
create a temporary file that needs to be deleted when the program exits:

import os 

# write some temporary data to a file
t = open('temp.txt', 'w') 
t.write('some important temporary text') 
t.close() 

# do some other processing
f = open('my_file.txt') 
my_number = int(f.read()) 
print(my_number + 5) 

# delete the temporary file
os.remove('temp.txt') 

Consider what happens if an exception is raised in the processing steps – 
the program will exit and the temporary file will not be removed. We can 
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rewrite the program using the techniques we learned above to catch the 
exceptions, but where should we put the clean up code? One solution is to
place it at the end of the try block and all the except blocks:

import os 
t = open('temp.txt', 'w') 
t.write('some important temporary text') 
t.close() 
try: 
    f = open('my_file.txt') 
    my_number = int(f.read()) 
    print(my_number + 5) 
    os.remove('temp.txt') # delete the temp file
except IOError as ex: 
    print("sorry, couldn't find the file: " + ex.strerror) 
    os.remove('temp.txt') # delete the temp file
except ValueError as ex: 
    print("sorry, couldn't parse the number: " +  ex.args[0]) 
    os.remove('temp.txt') # delete the temp file

but this isn't a great idea. Not only do we have to repeat the code three 
times, but it still won't get run in some circumstances – for instance, if an 
exception is raised inside the try block that doesn't get caught by one of 
our except blocks. We could put the clean up code after the try/except
section:

import os 
t = open('temp.txt', 'w') 
t.write('some important temporary text') 
t.close() 
try: 
    f = open('my_file.txt') 
    my_number = int(f.read()) 
    print(my_number + 5) 
except IOError as ex: 
    print("sorry, couldn't find the file: " + ex.strerror) 
except ValueError as ex: 
    print("sorry, couldn't parse the number: " +  ex.args[0]) 
 
os.remove('temp.txt')

191



Chapter 7: Exception handling 

This solves the first problem but not the second – if an exception is raised 
inside the try block and not caught by one of our except blocks, the 
clean up code won't be run. 

The correct way to handle this situation in Python is using a finally 
block. A finally block is guaranteed to run after the try block has 
finished, regardless of whether an exception is raised or not. The 
finally block has to come after the try/except/else blocks:

import os 
t = open('temp.txt', 'w') 
t.write('some important temporary text') 
t.close() 
try: 
    f = open('my_file.txt') 
    my_number = int(f.read()) 
    print(my_number + 5) 
except IOError as ex: 
    print("sorry, couldn't find the file: " + ex.strerror) 
except ValueError as ex: 
    print("sorry, couldn't parse the number: " +  ex.args[0]) 
finally: 
    os.remove('temp.txt')

finally.py

and is the best way to ensure that code is run even in the event of an 
unhandled exception. finally blocks are typically used for cleaning up 
or releasing resources like threads and database connections. 

Blocks of code that use exception handling can become quite complex, so 
here's a generic example with a quick summary:
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try:
    # code in here will be run until an exception is raised
except ExceptionTypeOne:
    # code in here will be run if an ExceptionTypeOne
    # is raised in the try block
except ExceptionTypeTwo:
    # code in here will be run if an ExceptionTypeTwo 
    # is raised in the try block
else:
    # code in here will be run after the try block 
    # if it doesn't raise an exception
finally:
    # code in here will always be run

Context managers
Some common operations are pretty much always carried out inside 
try/finally blocks, to ensure that resources used inside the try block 
are released. The most obvious example is reading a file – the pattern is 
nearly always:

f = open('somefile.txt')
try:
    # do something with f
finally:
    f.close()

This is to ensure that the file is always closed regardless of any exceptions
that might occur while it is open. A feature of Python called context 
managers allows this type of pattern to be encapsulated in a class and 
reused. Context managers are invoked using the with statement. The 
following bit of code is equivalent to the one above:

with open('somefile.txt') as f:
    # do something with f
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but is a lot more readable. The File context manager is by far the most-
used, but there are several other built in context managers, and we can 
define our own1.

Nested try/except blocks
Just as we can nest if statements or for loops in Python, we can nest 
try/catch blocks. This can be useful when we need to access variables in
the except or finally blocks that were defined earlier. Consider the 
case where we want to ensure that a file is closed properly even in the 
event of an exception being raised. We might be tempted to write 
something like this, using the finally block technique from above:

try: 
    f = open('my_file.txt') # this line might raise an IOError
    my_number = int(f.read()) # this line might raise a ValueError
except IOError: 
    print('cannot open file!') 
except ValueError: 
    print('not an integer!') 
finally: 
    f.close() 

but that won't work because the variable f is created inside the try block
and so can't be accessed from the finally block2. To achieve the result 
we want, we need two nested try blocks:

1 A discussion of how and why to do this is beyond the scope of this book, but if you're 
interested, take a look at the contextlib module.

2 Recall that in Python, variables which are declared inside a block of any type have their scope 
limited to that block.
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try: 
    f = open('my_file.txt') 
    try: 
        my_number = int(f.read()) 
    except ValueError: 
        print('not an integer!') 
    finally: 
        f.close() 
except IOError: 
    print('cannot open file') 

nested_try.py

Because the inner finally block is inside the outer try block, it has 
access to the variable f. It's a good idea to use this feature sparingly – if 
you find yourself writing code that requires more than two layers of 
nested try blocks, then it's probably better to encapsulate some of that 
complexity inside a separate function. 

Exceptions bubble up
Imagine you have some function that calls another function:

def function_one:
    # do some processing...
    return 5

def function_two:
    my_number = function_one()
    return my_number + 2

print(function_two())

and that the code represented by do some processing... could 
potentially raise an exception. We could catch and handle the exception 
in function_one:
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def function_one:
    try:
        # do some processing...
        return 5
    except SomeException:
        # handle the exception...
   
def function_two:
    my_number = function_one()
    return my_number + 2

print(function_two())

but what happens if we don't? The answer is that the exception will be 
passed up to the bit of code that called function_one – which in our 
case is function_two. So we have a second chance to handle the 
exception there:

def function_one:
    # do some processing...
    return 5

def function_two:
    try:
        my_number = function_one()
        return my_number + 2
    except SomeException:
        # handle the exception...
   
print(function_two())

And if we don't handle it there, then the exception is passed up again to 
the top level code, so we have a third chance to handle it:
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def function_one:
    # do some processing...
    return 5

def function_two:
    my_number = function_one()
    return my_number + 2
try:
    print(function_two())
except SomeException:
    # handle the exception

When describing this behaviour, we often say that exceptions bubble up. 
The best place to handle a given exception depends on what the program 
is doing, and a discussion of best-practice exception handling is beyond 
the scope of this book. However, it's often the case that it's easier to 
handle an exception at a higher level (i.e. in function_two or the top 
level code in our above example). As a general rule, your code should 
handle exceptions in the place where it can do something about 
them. 

Sometimes we want to take some action in response to an exception – for 
example, print a warning message – but we still want to allow code at a 
higher level to "see" the exception and respond to it. Python has a handy 
shorthand for doing this: the statement raise, on its own, will cause the 
exception that's currently being handled to be re-raised. This allows us to 
write something like this:
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def function_one:
    try:
        # do some processing...
        return 5
    except SomeException:
        print("warning: something went wrong")
        raise
   
def function_two:
    my_number = function_one()
    return my_number + 2

try:
    print(function_two())
except SomeException:
    # handle the exception

which effectively handles the exception twice: once in function_one() 
and then again at the top level of code. Speaking of the raise 
statement....

Raising exceptions
As we've seen above, exceptions are the way that Python's built in 
methods and functions signal that something has gone wrong. Writing 
exception-handling code in the form of try/except blocks is our way of 
intercepting those signals and responding to them. 

We can also write our own code that is capable of signalling when 
something has gone wrong. Just as with built in functions, our own 
functions can indicate a problem by raising an exception. To do this we 
create a new exception object, and then use it in a raise statement:

e = ValueError()
raise e
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In object oriented terms, what we are doing here is creating a new 
instance of the ValueError class and then passing it to raise. It's more
usual to create the exception object and raise it in a single statement:

raise ValueError()

The error message that we get from the above line of code is very 
unhelpful:

ValueError:

because we have not attached any details to our ValueError instance. 
To make it more useful, we can pass a string argument to the 
ValueError constructor describing the problem:

raise ValueError("this is a description of the problem")

Let's look at a biological example. Take the get_at_content() function
that we've used many times before: it takes a DNA string as its argument 
and returns the AT content as a floating point number:

def get_at_content(dna): 
    length = len(dna) 
    a_count = dna.count('A') 
    t_count = dna.count('T') 
    at_content = (a_count + t_count) / length 
    return at_content 

This function only works on DNA sequences without any ambiguous 
bases – it can only handle ATGC nucleotides. So we'll modify it to raise an 
exception if it's called with an argument that contains non-ATGC bases. 
We'll use a regular expression to check for non-ATGC bases, and raise a 
ValueError if one is found:
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import re 
def get_at_content(dna): 
    if re.search(r'[^ATGC]', dna): 
        raise ValueError('Sequence cannot contain non-ATGC bases') 
    length = len(dna) 
    a_count = dna.count('A') 
    t_count = dna.count('T') 
    at_content = (a_count + t_count) / length 
    return at_content 

check_bases.py

Now if we attempt to pass in an invalid DNA sequence string to the 
function:

print(get_at_content('ACGTACGTGAC')) 
print(get_at_content('ACTGCTNAACT')) 

it will raise an exception which, if uncaught, will cause the program to 
exit with an error message:

0.454545454545 
Traceback (most recent call last): 
  ...
ValueError: Sequence cannot contain non-ATGC bases 

Once we know that this function can potentially raise an exception, we 
can catch and deal with it in the usual way. For example, if we have a list 
of sequences for which we want to print the AT content we can catch any 
exceptions raised by get_at_content() to ensure that a single invalid 
sequence doesn't cause the entire program to crash:
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sequences = ['ACGTACGTGAC', 'ACTGCTNAACT', 'ATGGCGCTAGC'] 
for seq in sequences: 
    try: 
        print('AT content for ' + seq + ' is ' + 
str(get_at_content(seq)))
    except ValueError: 
        print('skipping invalid sequence '+ seq) 

In the above code, if we didn't handle the ValueError exception, then 
the second sequence in the list (which contains an N) would cause the 
program to crash and the third sequence would never get processed. 
Catching the exception allows our program to gracefully deal with the 
invalid sequence by printing a warning, then carry on processing the list:

AT content for ACGTACGTGAC is 0.454545454545 
skipping invalid sequence ACTGCTNAACT 
AT content for ATGGCGCTAGC is 0.363636363636 

Custom exception types
There's a fairly obvious problem with using a ValueError to indicate an 
invalid sequence in the example above. If we write an except block to 
catch and handle it, that same except block will also catch any other 
ValueError that might be raised. There are lots of operations that can 
create a ValueError in Python, and if one of those occurs somewhere 
inside the try block, our code above will wrongly claim that a given 
sequence has been skipped because it's invalid. This can lead to big 
trouble when programming, because it effectively hides other errors, 
making code very difficult to debug. 

The fundamental cause of the problem is that ValueError is not 
specific enough. It can be raised in response to a wide variety of 
situations, so when we encounter a ValueError we don't know if it's 
because of something that happened in get_at_content() or 
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something that happened elsewhere. The solution is to create our own 
exception class to represent a problem with an invalid base. Doing so is 
very straightforward – we just define a new class which is a subclass of the
Exception class1. Since the job of our new class is just to carry a 
message, it doesn't need any members or methods. The body of the class 
can just be pass2 and we can rely on the constructor from the 
Exception superclass:

class AmbiguousBaseError(Exception): 
    pass 

We can now edit get_at_content so that it raises an 
AmbiguousBaseError, and modify our except block so that it only 
catches an AmbiguousBaseError:

def get_at_content(dna): 
    if re.search(r'[^ATGC]', dna): 
        raise AmbiguousBaseError('Sequence cannot contain non-ATGC 
bases') 
    length = len(dna) 
    a_count = dna.count('A') 
    t_count = dna.count('T') 
    at_content = (a_count + t_count) / length 
    return at_content 
 
sequences = ['ACGTACGTGAC', 'ACTGCTNAACT', 'ATGGCGCTAGC'] 
for seq in sequences: 
    try: 
        print('AT content for ' + seq + ' is ' + 
str(get_at_content(seq)))
    except AmbiguousBaseError: 
        print('skipping invalid sequence '+ seq) 

custom_error.py

1 If that sentence doesn't make sense, take a look at the chapter on object oriented 
programming for an explanation of inheritance.

2 In Python, pass is just a place holder bit of code that means "do nothing".
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Now any exceptions raised by get_at_content() will not get mixed up 
with exceptions raised in other parts of the code. As a nice side benefit, 
the code is now clearer, as the name of the error class is a concise 
description of what it means. 

Custom exception types are just examples of classes, so we can treat them
just like any other custom class. For example, we can add members and 
methods to them, although that's not usually helpful. More interestingly, 
we can also build use inheritance to place them in class hierarchies, which
can sometimes be useful when  building complex class systems1. 

Recap
Whenever we write code that relies on some data or resources being 
supplied by an external source, we have to consider ways in which those 
data or resources might cause a problem for our code. Two common 
examples are when writing code that relies on user input (or on the 
contents of external files), and when writing library-type code that might 
be used by another programmer. Python's exception system offers an 
elegant way both to respond to problems that occur in built in functions 
and methods, and to report problems that occur in our own code. 

We started the chapter by looking at how exception handlers allow us to 
catch and deal with exceptions in a very flexible way – we can choose 
exactly what kinds of exceptions we wish to handle and can write 
arbitrary code to do so, and can choose at which level of the code 
exceptions should be handled. We can even interrogate exceptions to get 
extra information about the problem that occurred. 

Raising exceptions, on the other hand, allows us to signal that something 
has gone wrong in our code, resulting in (hopefully) helpful error 

1 See the solution to the second exercise in this chapter for a fairly minimal example.
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messages, and giving the calling code a chance to correct it. Python has a 
range of built in exception types to represent common problems, but if we
need something more specific then we can easily create our own. 

Using exceptions – rather than lengthy if/else conditions and print()
statements – to handle errors results in better code. Code that uses 
exceptions tends to be more robust, since it allows us to deal with 
problems when they actually arise, rather than trying to pre-emptively 
catch them. It also tends to be more readable, since error-handling code is
clearly demarcated and the syntax of the exception handling system 
makes it clear which type of errors are being handled. 

Some readers might find the examples presented in this chapter 
unconvincing. This is likely a reflection of the fact that exception 
handling is most valuable in large projects and library code, neither of 
which lend themselves to concise examples (or to exercises in 
programming books). As your programming projects become larger and 
more complicated, you'll find that the encapsulation offered by 
exceptions far outweighs the extra mental overhead of thinking about 
them.
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Exercises

Responding to exceptions
A Python programmer has written a piece of code that reads a DNA 
sequence from a file and splits it up into a set number of equal-sized 
pieces (ignoring any incomplete pieces at the end of the sequence). It asks
the user to enter the name of the file and the number of pieces, calculates
the length of each piece (by dividing the total length by the number of 
pieces), then uses a range() to print out each piece:

# ask the user for the filename, open it and read the DNA sequence
input_file = raw_input('enter filename:\n') 
f = open(input_file) 
dna = f.read().rstrip("\n") 

# ask the user for the number of pieces and calculate the piece length
pieces = int(raw_input('enter number of pieces:\n')) 
piece_length = len(dna) / pieces 
print('piece length is ' + str(piece_length)) 

# print out each piece of DNA in turn
for start in range(0, len(dna)-piece_length+1, piece_length): 
    print(dna[start:start+piece_length]) 

original.py

The code works well enough, but after playing around with it for a while, 
the programmer realizes that it's quite easy to make it crash by, for 
example, giving it the name of a non-existent file, or entering zero when 
asked for the number of pieces – or indeed, entering something that isn't 
a number at all when asked for the number of pieces. 

The programmer decides to make the code more robust by checking for 
these three errors at each step of the program before proceeding to the 
next step. That way, if it looks like the user has entered an invalid file 
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name, or an incorrect number, the program can exit gracefully with a 
useful error message. The programmer decides to use the os module to 
check for a file at the given path, the string isdigit method to check 
that the user has entered an integer, a normal if condition to check that 
the integer is greater than zero, and the sys.exit method to quit the 
program if any of these things are wrong. Here's the code that they come 
up with:

import os 
import sys 
 
# check for valid filename
input_file = raw_input('enter filename:\n') 
if not os.path.isfile(input_file): 
    sys.exit('not a valid filename') 
 f = open(input_file) 
dna = f.read().rstrip("\n") 

# check for valid number
pieces = raw_input('enter number of pieces:\n') 
if not pieces.isdigit(): 
    sys.exit('not a valid number') 

# check that number is not zero or negative
pieces = int(pieces) 
if pieces < 0: 
    sys.exit('number of pieces must be greater than zero') 

# do the processing
piece_length = len(dna) / pieces 
print('piece length is ' + str(piece_length)) 
for start in range(0, len(dna)-piece_length+1, piece_length): 
    print(dna[start:start+piece_length]) 

original_with_if.py

Unfortunately, the programmer didn't know that using exception handlers
to cope with these errors would be much better and result in more 
readable code. Rewrite this code to use error handlers instead of if 
statements. 

206



Chapter 7: Exception handling 

Exceptions for the SequenceRecord classes
Take a look back at the classes that we designed for working with DNA 
and protein sequences in the chapter on object oriented programming. 
Here's a reminder of the class code (with method bodies left out for 
readability):

class SequenceRecord(object): 
 
    def __init__(self, sequence, gene_name, species_name): 
        self.sequence = sequence 
        self.gene_name = gene_name 
        self.species_name = species_name 
 
    def get_fasta(self): 
        ... 
 
class ProteinRecord(SequenceRecord): 
    

def get_hydrophobic(self): 
... 

 
class DNARecord(SequenceRecord): 
 
    def complement(self): 
        ... 
 
    def get_AT(self): 
        ... 

As implemented above, the SequenceRecord constructor doesn't have 
any kind of error checking. There is nothing to prevent us from creating a 
DNARecord object with all kinds of invalid properties:
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# invalid bases in the sequence
d = DNARecord('ATGYCNNCR', 'COX1', 'Homo sapiens')

# an empty string for the gene name
d = DNARecord('ATGCGGTGA', '', 'Homo sapiens')

# an incorrectly-formatted species name
d = DNARecord('ATGCGGTGA', 'COX1', 'homosapiens')

We can even do completely inappropriate things like create a DNARecord
where the properties are not even strings:

d = DNARecord(3.1415, 42, -1)

Modify the class definitions to raise exceptions if we try to create objects 
with invalid properties. 
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Solutions

Responding to exceptions
The first step in rewriting the code is to go back to the original code and 
figure out exactly what kind of errors we are dealing with. We know from 
the examples earlier in the chapter that we'll get an IOError if we try to 
open a file that isn't there, and that we'll get a ValueError if we try to 
turn an inappropriate string into an integer using the int() function. We
can easily find out what happens when we ask for the DNA to be split into
zero pieces by running the first version of the code and giving the 
relevant input:

enter filename: 
test.dna 
enter number of pieces: 
0 
Traceback (most recent call last): 
 File "adding.py", line 8, in <module> 
 piece_length = len(dna) / pieces 
ZeroDivisionError: integer division or modulo by zero 

It turns out that we get a ZeroDivisionError when we try to calculate 
the piece length by dividing the DNA sequence length by the number of 
pieces. Armed with this information, it's just a question of wrapping the 
brittle code inside a try block, adding the appropriate except blocks, 
and adding an else block to print the results if everything is OK:
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try: 
    # ask the user for the filename, open it and read the DNA sequence 
    input_file = raw_input('enter filename:\n') 
    f = open(input_file) 
    dna = f.read().rstrip("\n") 
 
    # ask the user for the number of pieces and calculate the piece 
length 
    pieces = int(raw_input('enter number of pieces:\n')) 
    piece_length = len(dna) / pieces 
    print('piece length is ' + str(piece_length)) 
except IOError: 
    print("Couldn't open the file") 
except ValueError: 
    print("Not a valid number") 
except ZeroDivisionError: 
    print("Number of pieces can't be zero") 
else: 
    # print out each piece of DNA in turn 
    for start in range(0, len(dna)-piece_length+1, piece_length): 
        print(dna[start:start+piece_length]) 

When comparing the code above with the solution offered in the exercise 
description there are two things to notice. Firstly although it's not any 
shorter, it's much easier to read because the code for dealing with input 
errors is all collected in one place (the group of except blocks) rather 
than being mixed up with the rest of the code. 

Secondly, it is able to deal with a wider range of potential problems. For 
instance, consider the case where the specified input file exists, but its 
permissions are set such that it isn't readable by the program. Testing if 
the file exists using os.path.exists, as was done in the previous 
solution, will return True, but the program will still produce an error 
when trying to open it. However, in our approach above, the IOError 
that is raised when trying to open the file will still be caught and dealt 
with. In light of this fact, we can probably make our error message in the 
event of an IOError more helpful, by printing out the details alongside 
our own error message:
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...
except IOError as ex: 
    print("Couldn't open the file: " + ex.strerror) 
...

We can also make the ValueError message more helpful by printing out
its details – recall that these are stored in a list called args and that the 
first element is the message we want:

...
except ValueError as ex: 
    print("Not a valid number: " + ex.args[0]) 
...

Here's the whole thing put together:

try: 
    # ask the user for the filename, open it and read the DNA sequence 
    input_file = raw_input('enter filename:\n') 
    f = open(input_file) 
    dna = f.read().rstrip("\n") 
 
    # ask the user for the number of pieces and calculate the piece 
length 
    pieces = int(raw_input('enter number of pieces:\n')) 
    piece_length = len(dna) / pieces 
    print('piece length is ' + str(piece_length)) 
except IOError as ex: 
    print("Couldn't open the file: " + ex.strerror) 
except ValueError as ex: 
    print("Not a valid number: " + ex.args[0]) 
except ZeroDivisionError as ex: 
    print("Number of pieces can't be zero") 
else: 
    # print out each piece of DNA in turn 
    for start in range(0, len(dna)-piece_length+1, piece_length): 
        print(dna[start:start+piece_length]) 

responding.py

211



Chapter 7: Exception handling 

Exceptions for the SequenceRecord classes
Tackling this problem is going to involve a combination of techniques 
from this chapter and the one on object oriented programming, so make 
sure you've read both before proceeding. 

We know that, when writing classes, it's the constructor that's responsible
for creating a new object based on the arguments that are passed to it, so 
that seems like a logical place to put our validation code. Let's start with a
simple bit of validation: we don't want to allow empty strings as gene 
names, so we'll just check the length of the gene name and raise an error 
if it's equal to zero. We want this behaviour to apply to both DNARecord 
and ProteinRecord objects, so we'll add it to the constructor of the 
base class SequenceRecord1:

class SequenceRecord(object): 
 
    def __init__(self, sequence, gene_name, species_name): 
        if len(gene_name) == 0: 
            raise ValueError('gene name cannot be empty') 
        self.sequence = sequence 
        self.gene_name = gene_name 
        self.species_name = species_name 
 
    def get_fasta(self): 
        ...

This will cause a ValueError to be raised (and an error message printed,
if it's not caught) if we try to do something like this:

d = DNARecord('ATGCGGTGA', '', 'Homo sapiens')

Note that we could have created a custom error type – perhaps called 
EmptyGeneNameError – to raise here. The choice of whether to use a 
built in Python exception or a custom one generally boils down to: are 
1 Take a look at the section on inheritance in the chapter on object oriented programming for a 

reminder about base and derived classes.
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you frequently going to want to write exception handlers just to handle 
this particular situation? To a large extent, this depends on how you 
anticipate the code being used. 

This validation check has an interesting side-effect; it also raises an error 
if we try to pass in a number as a gene name:

d = DNARecord('ATGCGGTGA', 42, 'Homo sapiens')

TypeError: object of type 'int' has no len() 

but notice that the exception is raised by the call to len() (since integers
don't have a length) and hence is a TypeError rather than a 
ValueError. There are a couple of different approaches we can take to 
the possibility of a non-string gene name. We might want to be flexible, 
and allow a SequenceRecord object to be created with any type of 
object as a gene name, in which case we need to convert the gene_name 
variable to a string before checking its length:

class SequenceRecord(object): 
 
    def __init__(self, sequence, gene_name, species_name): 
        if len(str(gene_name)) == 0: 
            raise ValueError('gene name cannot be empty') 
        self.sequence = sequence 
        self.gene_name = gene_name 
        self.species_name = species_name 
 
    def get_fasta(self): 
        ...

If we take this approach, then we can create a SequenceRecord with 42 
as the gene name argument, which will get converted to the string "42" 
when the length of the gene name is checked. In fact we can pass in any 
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type of data as the gene name argument, since all Python objects can be 
represented as strings – which may not be what we want. 

Alternatively, we can decide to be very strict and only accept strings as 
gene name arguments. We can enforce this by adding another validation 
check which raises a TypeError if the gene name isn't a string:

class SequenceRecord(object): 
 
    def __init__(self, sequence, gene_name, species_name): 
        if not isinstance(gene_name, str): 
            raise TypeError('gene name must be a string') 
        if len(gene_name) == 0: 
            raise ValueError('gene name cannot be empty') 
        self.sequence = sequence 
        self.gene_name = gene_name 
        self.species_name = species_name 
 
    def get_fasta(self): 
        ...

The choice of whether to be strict or flexible about argument types is a 
complex one and depends largely on how we anticipate the code being 
used. We must be careful, however, when programming in Python not to 
end up abusing exceptions to recreate the type systems of statically-typed
languages like Java. 

On to the next problem – checking that the species name passed to the 
constructor is properly-formatted. Let's first specify what we mean by 
properly-formatted: we want to check that the species name is in exactly 
two parts separated by a single space, and that everything is in lower case 
except for the first character, which must be in upper case. We can write a 
regular expression to match this pattern:

r"[A-Z][a-z]+ [a-z]+"
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which we'll use in the re.match() function rather than the more usual 
re.search because we want to match the entire string rather than just a
part of it:

import re 
class SequenceRecord(object): 
 
    def __init__(self, sequence, gene_name, species_name): 
        gene_name = str(gene_name) 
        if not isinstance(gene_name, str): 
            raise TypeError('gene name must be a string') 
        if len(gene_name) == 0: 
            raise ValueError('gene name cannot be empty') 
        
        # check for valid species name
        if not re.match(r"[A-Z][a-z]+ [a-z]+", species_name): 
            raise ValueError('species name incorrectly formatted') 
        self.sequence = sequence 
        self.gene_name = gene_name 
        self.species_name = species_name 
 
    def get_fasta(self): 
        ...

The appropriate exception to raise here is a ValueError, since if the 
regular expression match executes successfully (even if the pattern itself 
fails to match) then we know that the argument must have been a string. 
Just like before, we can takes things a step further if we want and check 
the type of the argument as well. 

We've saved the trickiest part of the exercise for last: how to prevent 
SequenceRecord objects being created with invalid characters. The 
reason that this part is difficult is that, unlike the previous checks, our 
criteria here are different for DNARecord objects (where we want to only 
allow nucleic acid codes) and ProteinRecord objects (where we want to
only allow amino acid residue codes). The checks themselves are fairly 
straightforward:
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if re.search(r'[^ATGC]', some_dna_sequence): 
        # raise an exception

if re.search(r'[^FLSYCWPHQRIMTNKVADEG]', some_protein_sequence): 
        # raise an exception

but the question is where to put them. There are two good options1: 
either we could override the base class constructor in each of the derived 
classes,  or we could add a validation method to the derived classes which 
can be called by the superclass constructor. The first approach is probably
the most object oriented: it follows the principal of allowing derived 
classes to inherit general functionality from the base class while adding 
functionality that is specific to themselves. Take a look at the chapter on 
object oriented programming, specifically the section on overriding 
methods in the base class, for an example of this type of validation.

Because we've already seen an example of the first approach in a previous 
chapter, we'll try the second one here so that we have seen an example of 
both. To do this we simply add a sequence validation method to each of 
the derived classes (DNARecord and ProteinRecord) and call it in the 
constructor of the parent class (SequenceRecord) as the last step before
actually assigning the arguments. The magic of inheritance ensures that 
when the sequence validation method is called in the constructor, the 
appropriate subclass method is executed depending on whether we are 
creating a DNARecord or a ProteinRecord. 

Because we're intending the sequence validation method to only be called
in the base class constructor, we can take advantage of the Python 
formatting convention that methods beginning with an underscore are for
internal use only. This isn't enforced by the language in any way, but it's a 
useful hint to anyone looking at the source code that they shouldn't call 
the sequence validation method for any other reason. Here's the code:

1 And more than a few bad ones, which we won't discuss here!
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import re 
class SequenceRecord(object): 
 
    def __init__(self, sequence, gene_name, species_name): 
        gene_name = str(gene_name) 
        if not isinstance(gene_name, str): 
            raise TypeError('gene name must be a string') 
        if len(gene_name) == 0: 
            raise ValueError('gene name cannot be empty') 
        if not re.match(r"[A-Z][a-z]+ [a-z]+", species_name): 
            raise ValueError('species name incorrectly formatted') 

        # validate the sequence before we assign it
        self._validate_sequence(sequence) 
        self.sequence = sequence 
        self.gene_name = gene_name 
        self.species_name = species_name 
 
    ...
 
class ProteinRecord(SequenceRecord): 
 
    def _validate_sequence(self, sequence): 
        if re.search(r'[^FLSYCWPHQRIMTNKVADEG]', sequence): 
            raise ValueError("invalid amino acid code in sequence") 
 
    ...
 
 class DNARecord(SequenceRecord): 
 
    def _validate_sequence(self, sequence): 
        if re.search(r'[^ATGC]', sequence): 
            raise ValueError("invalid base in sequence") 
 
    ...

Because these type types of error fall into a natural hierarchy – they are 
both examples of invalid sequences – let's create a few custom exception 
classes to represent them. We'll write a base class, 
InvalidCharacterError, which inherits from the Exception class, 
then add two derived classes to represent errors in DNA and protein 
sequences which will inherit from the base class. Here are the class 
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definitions for the exceptions – we don't need them to do anything that 
isn't implemented by the Exception class, so the class definition body 
can just be pass in each case:

class InvalidCharacterError(Exception): 
    pass 
 
class InvalidBaseError(InvalidCharacterError): 
    pass 
 
class InvalidAminoAcidError(InvalidCharacterError): 
    pass 

sequence_record.py

And here are the modifications that we have to make to the validation 
methods:

class ProteinRecord(SequenceRecord): 
 
   def validate_sequence(self, sequence): 
     if re.search(r'[^FLSYCWPHQRIMTNKVADEG]', sequence): 
        raise InvalidAminoAcidError("invalid amino acid code in 
sequence") 
 
   ...
 
 
class DNARecord(SequenceRecord): 
 
    def validate_sequence(self, sequence): 
      if re.search(r'[^ATGC]', sequence): 
         raise InvalidBaseError("invalid base in sequence") 
    ...
 

sequence_record.py

Using a hierarchy of custom exceptions in this way allows us to write an 
exception handler that can cope with any type of error caused by an 
invalid character:
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except InvalidCharacterError:
    # deal with the invalid sequence

as well as exception handlers that only catch particular types (i.e. DNA or 
protein) of error. 
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Afterword
This is the end of Advanced Python for biologists; I hope you have 
enjoyed the book, and found it useful. Remember that if you have 
any comments on the book – good or bad – I'd love to hear them; 
drop me an email at

 martin@pythonforbiologists.com

If you think that you might end up using the techniques you've 
learned in this book to build larger Python programs, then take a 
look at the companion book Effective Python development for 
Biologists, which contains detailed discussions of topics that you're 
likely to run into – things like how to test your code, and how to 
build a user interface. 

If you've found the book useful, please also consider leaving a 
Amazon review. Reviews will help other people to find the book, and
hopefully make learning Python a bit easier for everyone.

mailto:martin@pythonforbiologists.com
mailto:martin@pythonforbiologists.com
mailto:martin@pythonforbiologists.com
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	def get_subject(hit_string): return hit_string.split("t")[1]
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	def comment_filter(line): return not line.startswith('#') def get_percent_id(hit_string): return float(hit_string.split("t")[2]) def get_query(hit_string): return hit_string.split("t")[1] hit_lines = filter(comment_filter, open('blast_result.txt')) f = filter(mismatch_filter, hit_lines) s = sorted(hit_lines, key=get_percent_id) low_id_hits = s[0:10] for subject in map(get_query, low_id_hits): print(subject)
	blast_filter.py
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	blast_filter.py
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